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Abstract— Prostate cancer is the most common form of
cancer and third leading cause of cancer death in Canadian
men. Multi-parametric magnetic resonance imaging (mpMRI)
has become a powerful non-invasive diagnostic tool for the
detection of prostate cancer. Among mpMRI imaging modali-
ties, diffusion-weighed imaging has shown the most promising
results in accurate detection of prostate cancer. Introduced
recently, correlated diffusion imaging (CDI) is a new form
of diffusion imaging which accounts for the joint correlation
of diffusion signal attenuation across multiple gradient pulse
strengths and timings to improve the separability of cancer-
ous and healthy tissues. Dual-stage CDI (D-CDI) is a newer
generation of CDI where in contrast to CDI that does not
capture anatomical information, an additional signal mixing
stage between the correlated diffusion signal from the first
signal mixing stage (CDI) and an auxiliary diffusion signal
is performed to incorporate anatomical context. The core of
D-CDI is a signal mixing algorithm that combines diffusion
images at different b values to construct a single image. In
this paper, we enhance the signal mixing algorithm to optimize
the contribution of each single b-value image to maximize the
separability of cancerous and healthy tissues. We evaluated the
enhanced D-CDI (eD-CDI) using area under the ROC curve for
datasets of 17 patient cases with confirmed prostate cancer and
the results show that eD-CDI outperforms the original D-CDI
as well as T2 weighted images and diffusion-weighed images
used in the form of apparent diffusion coefficient maps.

I. INTRODUCTION

Prostate cancer is the most common form of cancer and
third leading cause of cancer death diagnosed in Canadian
men, with more than 23,500 new cases and 4,100 deaths in
2015 [1]. Nevertheless, if diagnosed early, the survival rate of
prostate cancer is relatively high [2]. Therefore, it is crucial
to have a reliable and accurate screening method in place
to detect and diagnose clinically significant prostate cancers
early enough to allow for the right course of treatment to be
taken if necessary.

Prostate Specific Antigen (PSA) screening has been shown
to result in overtreatment and overdiagnosis of prostate
cancer reducing the quality of life [3], [4]. Furthermore,
biopsy-based Gleason score suffers from sampling issues
where in some cases the index tumour is entirely missed. It
has also become increasingly clear that prostate biopsies are
harmful resulting in increased hospital admission rates due
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to infectious complications [5]. Recent advances in multi-
parametric magnetic resonance imaging (mpMRI) of prostate
have shown promise in improving the accuracy of diagnosis
with mpMRI being more closely correlated with the prostate-
ctomy Gleason score than the pre-operative biopsy. By cap-
turing the entirety of cancer site and the ability to reconstruct
3D images, mpMRI has the distinct advantage of assessment
of tissue heterogeneity, a well described phenomenon in
cancer analysis with varying cell phenotypes. Nevertheless,
mpMRI readings suffer from interobserver variability and
some clinically significant cancers are still missed [6].

To overcome the shortcomings of conventional qualita-
tive assessments of mpMRI, as part of a clinical decision
support system, automated prostate cancer algorithms that
generate and utilize the quantitative imaging features have
been the focus of several research groups in recent years.
These computer-aided detection (CAD) tools aim for helping
radiologists in interpreting images more accurately and more
consistently [7], [8], [9]. Specifically, mpMRI which com-
bines T2-weighted MRI (T2w), diffusion-weighted imaging
(DWI), and dynamic contrast enhanced imaging (DCE) has
been extensively used for prostate cancer diagnosis by differ-
ent prostate cancer CAD algorithms. By taking advantage of
the unique information provided by each individual imaging
technique, mpMRI can provide the CAD algorithms with
the different characteristics of prostate tissue to improve the
separability between cancerous and healthy tissues. Although
DCE is considered as part of mpMRI, because it requires in-
vasive contrast agent, T2w and apparent diffusion coefficient
(ADC) map together are considered as the most commonly
used mpMRI modality.

Computational diffusion-weighted MRI (CD-MRI) are
DWI sequences that have been generated computationally
with the goal of harnessing the information embedded in
mpMRI but not captured by conventional sequences of DWI.
Particulary, computed high b-value (b-values greater than
1, 000s/mm2) DWI (CHB-DWI) has been proposed as an
alternative approach to actual high b-value DWI, which
cannot be obtained due to hardware limitations, where a
computational model is used to reconstruct DWI imagery
at high b-values using low b-value DWI acquisitions [10],
[11].

CD-MRI has also been used in designing CAD tools
where CHB-DWI has been extensively used to improve the
performance of CAD algorithms for prostate cancer [7].
While CHB-DWI reconstructs an image at a high b-value
using low b-value images, correlated diffusion imaging (CDI)
was proposed to combine the existing b-value images in
a way so that the tissue being imaged is characterized by
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the joint correlation of diffusion signal attenuation across
multiple gradient pulse strengths and timings [12]. By taking
advantage of information available across multiple gradient
pulse strengths and timings, CDI improves the separability
of cancerous and healthy tissue while reducing the need for
gradient pulse fine-tuning [12].

While CDI was shown to improve the signal delineation
between cancerous tissue and healthy tissue within the
prostate gland [7], [13], one limitation it faced was the lack
of anatomical information where it more or less looked as
a binary image making it challenging for a radiologist to
perform a visual assessment and accurate cancer localization.
To overcome this limitation, dual-stage CDI (D-CDI) was
proposed in which an additional signal mixing stage was
performed between the correlated diffusion signal from the
first signal mixing stage (CDI) and an auxiliary diffusion
signal or T2w image to incorporate anatomical context [14]
(Figure 1).

In this paper, we present enhanced D-CDI, eD-CDI, in
which a new formulation is introduced that extends greatly
upon the signal mixing formulation in D-CDI to allow
for an optimal cancerous-healthy tissue delineation. In eD-
CDI, the contribution of each individual b-value image to
the signal mixing is optimized in order to maximize the
performance of the final correlated diffusion signal (i.e., eD-
CDI) with respect to the delineation of cancerous and healthy
tissues within the prostate gland. As it will be shown in the
upcoming sections, eD-CDI outperforms the original D-CDI
as well as the conventional mpMRI namely T2w and ADC
modalitites.

(a) CDI (b) D-CDI

Fig. 1: A sample prostate image shown in CDI and D-CDI
modalitites [14].

II. METHODOLOGY

The methodology of the dual-stage CDI (D-CDI) is sum-
marized in Fig. 2. First, several diffusion signals are acquired
at different gradient pulse strengths and timings. Next, the
acquired diffusion signals are mixed computationally to
obtain the local correlation of signal attenuation across the
acquired signals. Finally, in order to include anatomical
context, an auxiliary diffusion signal (e.g., b0 image) or T2w
image is mixed with the correlated diffusion signal of the first
signal mixing stage oC1. In enhanced D-CDI or eD-CDI, the
signal mixing stages also contain an optimization stage where
the contribution of each diffusion signal is controlled to
maximize the delineation of cancerous and healthy tissues in

the final image oC2. This is done by using some coefficients
(αi, τb, τC1 ) as inputs to signal mixers.

Fig. 2: Overview of enhanced dual-stage correlated diffusion
imaging

A detailed description of the steps involved in eD-CDI is
presented in sections II-A, II-B, and II-C.

A. Diffusion signal acquisition

Several diffusion signals (Si) are acquired (S = {Si|i =
1, ..., N}), where Si represents the ith acquired diffusion
signal [15]:

Si = S0e
−biD (1)

and S0 is the signal intensity without the diffusion weighting
and D represents the strength of the diffusion. The signal
loss due to spins diphase is controlled by bi, which consists
of amplitude and duration of the diffusion pulses, gradient
intensity and the time between the two pulses and gyromag-
netic ratio.

B. Enhanced signal mixing stages

The acquired diffusion signals S are mixed together to
produce a signal C1 that accounts for the local signal
attenuation correlation across the N different gradient pulse
strengths and timings within a local spatial sub-volume V .
The correlated diffusion signal C1 can be calculated within
the diffusion range [q1, qN ] as follows:

C1(x, α1, ..., αN ) =

∫
. . .

∫
Sα1
q1 (x) . . . S

αN
qN (x)

f (Sq1(x), . . . , SqN (x)|V (x)) dSq1(x) . . . dSqN (x) (2)

where x denotes voxel location and f denotes the conditional
joint probability of Sq1(x), . . . , SqN (x) within the local
spatial sub-volume V around x. For this study, [q1, qN ]
was set at [0s/mm2, 2000s/mm2] where diffusion images
of [0s/mm2, 1000s/mm2] was acquired and high b-value
images of [1300s/mm2, 2000s/mm2] were computationally
constructed using a Bayesian model with the least squares
estimation technique [10]. In addition, V was set as a 7
mm3 spatial sub-volume as it provided a strong cancerous
and healthy tissue separation in prostate gland [12]. To com-
pensate for patient movement during the DWI acquisition,
diffusion images (Sqi) were registered to T2w image with an
affine registration algorithm using the patients coordinates.



Once the correlated diffusion signal C1 was constructed, it
is fed to the second signal mixing stage, where C1 is mixed
with an auxiliary diffusion signal (or T2w) Sb to generate
the final correlated diffusion signal C2 as follows:

C2(x) =

∫
. . .

∫
exp (τbSb(x)) · exp (τC1

C1(x))

f (Sb(x), C1(x)|V (x)) dSb(x)dC1(x) (3)

where τb and τC1
are the scale factors for Sb and C1, re-

spectively, and f is the conditional joint probability between
Sb and C1 within the local sub-volume V around x. For our
experiments in this work, we used T2w as Sb signal.

C. Optimization stage

The optimization phase occurs within Mixer 1 and 2
stages where coefficients α1 . . . αN , τb and τC1

are used to
optimize C1 and C2 and generate oC1 and oC2 to enhance
the separability of cancerous and healthy tissues in the final
correlated diffusion signal eD-CDI (Equation 4). This is
done by maximizing the area under the receiver operating
characteristic (ROC) curve (Az) of oC2 with respect to a
training data in which the tumourous regions have been
marked as ground truth. The optimized Mixer 1 and 2 stages
then generate an enhanced correlated diffusion signal eD-
CDI.

[α1, ..., αN , τb, τC1
] = argmaxAz(x, α1, ..., αN , τb, τC1

) (4)

III. EXPERIMENTAL SETUP

In this section, the details of image acquisition protocols,
the imaging data, and the performance measures used in this
study are described.

A. Image Data

To evaluate the performance of the proposed enhanced
dual-stage correlated diffusion imaging (eD-CDI) method for
delineating between cancerous and healthy tissues in prostate
gland, the imaging data of 17 patients were used. The
images were acquired using a Philips Achieva 3.0T machine
at Sunnybrook Health Sciences Centre, Toronto, Ontario,
Canada. All data was obtained under the local institutional
research ethics board. The age of the patients ranged from 53
to 83. For each patient, the following MRI modalities were
obtained: T2w, DWI, and D-CDI. Table I shows the summary
of the imaging parameters for the imaging modalities used
for the experiments (e.g., displayed field of view (DFOV),
resolution, echo time (TE), and repetition time (TR)). For
DWI, we used the ADC map for evaluation purposes since
it is widely used for DWI in detecting and diagnosing
prostate cancer. All imaging modalities were processed in
the ProCanVAS (Prostate Cancer Visualization and Analysis
System) platform developed at Sunnybrook Research Insti-
tute, Toronto, Ontario, Canada, and University of Waterloo,
Waterloo, Ontario, Canada.

TABLE I: Summary of imaging parameters
Modality DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)

T2w 22× 22 0.49× 0.49× 3 110 4,687

DWI 20× 20 1.56× 1.56× 3 61 6,178

D-CDI 20× 20 1.56× 1.56× 3 61 6,178

eD-CDI 20× 20 1.56× 1.56× 3 61 6,178

B. Evaluation Metrics
To quantitatively evaluate the performance of the proposed

eD-CDI modality and in order to compare its performance
with other modalities namely T2w, ADC, and D-CDI, the
images were studied and marked by an expert radiologist
and confirmed by the corresponding histopathology data
with Gleason score 6 and above, which was used as the
ground truth for our experiments. Each modality was used
to generate an ROC curve with respect to the ground-truth
data. The optimization for parameters α1 . . . αN , τb and
τC1 in Equation 4 was performed using a leave-one-patient-
out cross validation where for each patient data, the set of
parameters that maximized the area under the ROC curve for
the remaining patients data was used. This experiment was
repeated for all four modalities of T2w, ADC, D-CDI, and
eD-CDI.

IV. EXPERIMENTAL RESULTS

Table II shows the area under the ROC curve for all four
imaging modalities. The ROC curve for each modality is
shown in Figure 3.

TABLE II: Evaluation results for prostate cancer detection
Modality T2w ADC D-CDI eD-CDI

Area under ROC curve 0.55 0.81 0.80 0.86

Fig. 3: ROC curves and the area under ROC curves (Az) for
T2w, ADC, D-CDI, and eD-CDI modalities

It is seen that the proposed eD-CDI outperforms the other
modalities including the original D-CDI by a large margin



of at least 5% (i.e., 0.86 vs 0.81) in the area under ROC
curve. This confirms the promise of eD-CDI for a reliable
CAD algorithm for prostate cancer with improved accuracy
and consistency of cancer diagnosis.

Figure 4 shows a sample image of T2w, ADC map, D-
CDI, and eD-CDI for a confirmed tumourous case. As it can
be seen, eD-CDI is able to highlight the cancerous region
by clearly darkening the area so it is easier for clinicians
to detect the tumour more accurately. Given that mpMRI
reading is difficult and usually requires an experienced
radiologist to accurately interpret them for diagnosis, the
proposed eD-CDI has the potential to harness the information
in the mpMRI which cannot be easily deciphered by human
experts thus enabling less experienced clinicians to interpret
mpMRI more accurately. Moreover, it can play a crucial role
in reducing the interobserver variability of interpretations
among the clinicians which is an important factor contribut-
ing to misdiagnosis of clinically significant prostate cancers.

(a) T2w (b) ADC

(c) D-CDI (d) eD-CDI

Fig. 4: A confirmed prostate tumour on different modalities
shown by an arrow. The tumor region is dark in eD-CDI,
while capturing anatomical structure of the imaged tissue.

V. CONCLUSIONS

In this paper, we introduced enhanced dual-stage corre-
lated diffusion imaging, eD-CDI, which is a new compu-
tational diffusion MR imaging modality for prostate cancer
detection. The proposed eD-CDI improves the delineation of
cancerous and healthy tissues in the prostate gland by uti-
lizing the local correlation among different diffusion signals
and by optimizing the way each diffusion signal contributes
to the final correlated diffusion signal. The proposed eD-CDI
performance was evaluated via a leave-one-patient-out cross-
validation and compared against the original unoptimized
D-CDI as well as DWI (ADC map) and T2w modalities
using 17 patients datasets with confirmed prostate cancer.
The results showed that the proposed eD-CDI outperforms

the original D-CDI as well as ADC and T2w modalities
with a large margin in the area under the ROC curve with
respect to the separability of cancerous and healthy tissues
within the prostate gland (0.86 vs 0.81). As future work, the
proposed eD-CDI will be integrated into a computer-aided
detection tool for prostate cancer to investigate the efficacy
of eD-CDI in the automatic detection of prostate cancer via
a comprehensive texture feature model.
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