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Bag of Bags: Nested Multi Instance Classification for Prostate Cancer
Detection

Farzad Khalvati, Junjie Zhang, Alexander Wong, Masoom A. Haider

Abstract— Computer-aided detection (CAD) algorithms have
been proposed for auto-detection of different types of cancer.
CAD algorithms rely on machine learning methods to classify
regions of interest in images into cancerous and healthy regions.
In cancer screening, the foremost problem to solve is whether
a patient has cancer, regardless of the location of cancerous
regions in the organ. This allows early detection of the disease
leading to a right course of action in terms of treatment
to be taken. In machine learning, this problem has been
formulated as multi-instance learning (MIL) where bags of
instances are classified rather than the individual instances.
In this paper, we propose a bag of bags (BoB) nested MIL
algorithm where high-level bags (or parent bags), each contains
multiple smaller bags of instances. We applied the proposed
BoB MIL algorithm to prostate cancer detection problem using
magnetic resonance imaging data to first detect which patients
have cancer and consequently, to detect which slices in the 3D
volume imaging data of the detected patients contain cancerous
regions. Experimental results obtained from the imaging data of
30 patients with ground-truth data based on biopsy results show
that the proposed algorithm is not only capable of detecting
prostate cancer at patient level, it is also able to detect the
cancerous regions at slice level of imaging data with high
accuracy.

I. INTRODUCTION

Computer-aided detection (CAD) algorithms have been
proposed for auto-detection of different types of cancer. The
goal of CAD algorithms is to increase the accuracy and
consistency of cancer detection. In cancer management, early
and accurate detection is key for a right course of action
to be taken. Prostate cancer is the most common form of
cancer and third leading cause of cancer death diagnosed in
Canadian men, with more than 24,000 new cases and 4,100
deaths in 2015 [1]. Nevertheless, early and accurate detection
usually leads to high probability of survival [2]. Thus, it is
crucial to have a reliable and accurate screening method for
prostate cancer to improve the likelihood of survival.

Multi-parametric magnetic resonance imaging (mpMRI),
which usually combines T2-weighted MRI (T2w) and
diffusion-weighted imaging (DWI), is increasingly gaining
traction in the clinical workflow of prostate cancer diagnosis.
This is due to high accuracy in detection and non-invasive
nature, as opposed to biopsy which is both painful and
harmful [3], and the fact that imaging is capable of creating
3D images enabling the study of heterogeneity in cancerous
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regions, a well described phenomenon in cancer analysis with
varying cell phenotypes. The conventional interpretations of
mpMRI data are usually qualitative in nature which lead to
high variability among readers and some clinically significant
cancers are still missed [4].

To improve the accuracy and consistency of diagnosis,
CAD tools have been proposed to aid the clinicians in
interpreting the massive imaging data available in the current
clinical settings for prostate cancer diagnosis [5], [6]. These
CAD algorithms usually rely on pixel-level classification:
first, a set of features (e.g., texture features) is computed
for local neighbourhoods of pixels (e.g., 3× 3). Due to high
number of features, feature selection algorithms are usually
applied to reduce the feature space. The selected features
are used to train a classifier which is then used to classify
new (unseen) windows of pixels into cancerous or healthy
regions [5], [6], [7], [8], [9], [10], [11].

The proposed approaches in almost all of these CAD
algorithms for prostate cancer are usually bottom-up; the
classification is performed at pixel level (e.g., 3 × 3 neigh-
bourhoods). Once the pixels in each slice of the 3D imag-
ing data of a patient are classified, they are combined
together (aggregated) to classify each slice to cancerous/non-
cancerous, and then to decide whether the patient has cancer.

The drawback for bottom-up approaches is the fact that
mpMRI data can be noisy, and pixel-level classification may
result in many false positives leading to over-detection of
prostate cancer (low specificity). In addition, the training
data is usually heavily imbalanced at pixel-level; only a
small fraction of pixels (e.g., less than 1%) are cancerous.
Thus, in a 3D volume of imaging data for one patient,
the vast majority of pixels are non-cancerous, making the
classification a challenging task.

On the other hand, for cancer screening, the utmost
important diagnosis action is to first determine whether the
patient has cancer regardless of the location in the organ.
Once correctly diagnosed, the consequent course of action
may include the precise localization of the tumour. Inspired
by this, in this paper, we propose a top-down approach for
detection of prostate cancer.

Multi-instance learning or MIL aims for classifying bags
of instances as the main classification goal [12]. In this
method, each bag contains multiple feature vectors, each
representing an instance. In training, the labelling is done
at instance level. Nevertheless, the task at hand in MIL is to
classify bags of instances.

The motivation behind MIL is scenarios where the task
at hand is to classify each bag of instances rather than each
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individual instance. The standard assumption in MIL is that
for a bag to be considered positive, it should contain at
least one positive instance [13]. This is the case in cancer
screening as well where a small cancerous region in prostate
(e.g., 3×3 pixels) is enough to diagnose the patient as having
cancer.

Vocabulary-based techniques are a subset of MIL in which
the instances are classified first in an unsupervised way,
which are then used to embed instance level information
into the bag level [12], [14]. This enables the classification
of unseen data at bag level, in a sense, with no direct
correspondence to the classification of the instances of the
bag.

In this paper, we extend upon vocabulary-based MIL to
solve the problem of screening for prostate cancer. We intro-
duce the concept of bag of bags in MIL where instances are
grouped into small bags (sub-bags) which are then grouped
to create high-level (parent) bags. This way, once the parent
bags are classified, the sub-bags are classified with a higher
accuracy. In our proposed method, the bags in training data
are also sorted based on their labels, in order to increase the
performance of clustering algorithm in terms of convergence.

The proposed bag of bags (BoB) nested MIL method in
this paper is a top-down method in the context of prostate
cancer detection. First, the detection is performed at patient
level. Next, the imaging data of those patients with cancer are
studied and analyzed further to determine which 2D slices in
the 3D imaging data contain cancerous regions. We applied
the proposed method to mpMRI data of 30 patients (15 with
cancer and 15 healthy) and the proposed algorithm was able
to detect cancer at both patient and slice level with high
accuracy.

This paper is organized as follows: in Section II, the
proposed BoB MIL method is presented. Section III presents
the testing methodology which includes the description of
imaging data, feature model, and the evaluation metrics used
in this research. Sections IV and V present the experimental
results and conclusions, respectively.

II. METHODOLOGY

The proposed algorithm in this paper is an extension
on multi-instance learning (MIL) method where a classifier
is learned via a set of bags as training data and each
bag comprises of multiple feature vectors or instances. As
discussed before, in vocabulary-based MIL techniques, the
instances are first clustered in an unsupervised way, which
are then used to embed instance level information into the
bag level [12].

Let X be a set of all bags of instances X = {X1, ..., Xn}
and each bag Xi has multiple instances Xi = {−→x1, ...,

−→xm}.
In order to compute the vocabulary, a clustering algorithm
such as K-means (Km) with hard assignment is applied to
X to cluster the original instances into K clusters:

V = Km(X) (1)

which yields V = {−→c1 , ...,−→cK} where −→cj is the centroid of
jth cluster of original instances. Once the vocabulary V was
built, in the next step, a mapping function M is used to map
each bag Xi to vocabulary V :

H = M(X,V ) (2)

where H = {
−→
H1, ...,

−→
Hn}; and

−→
Hi = (h1, .., hK) is the

histogram indicating the relationship between instances in
Xi and vocabulary V . To calculate

−→
Hi, first, it is determined

which centroids −→cj in V are the closest to each instance −→xz

in Xi, defined by function f [12]:

fk(−→xz) =
{
1, if k = argmink=1,..,K ||−→xz −−→ck||
0, otherwise

(3)

hk is defined as:

hk =
∑
−→xz∈Xi

fk(−→xz), (4)

The calculated set of histograms H , acts as the training
set where the labels are the corresponding bags labels. An
unseen bag, Xtest, is first mapped to the vocabulary V to
yield Htest = M(Xtest, V ), and Htest is then classified
using a classifier G.

cl = G(H,Htest) (5)

where cl is the classification results (label).
Our proposed BoB MIL algorithm in this paper has two

features. First, the quality of the training set H in terms of
separating different classes of bags is highly dependent on
the performance of the clustering function Km in Equation 1.
In order to improve the convergence of Km to meaningful
centroids, we propose to sort the bags in X based on
their labels before feeding to the clustering function. This
yields highly converged centroids by Km leading to more
meaningful patterns in H . As shown in results section, this
step is key for the proposed method for accurate classification
of bags of instances.

Vs = Km(S(X)) (6)

where S is a sorting function based on bags labels. Thus, the
training set Hs is generated by mapping X to vocabulary Vs:

Hs = M(X,Vs)

cl = G(Hs, H
test
s ) (7)

where Htest
s = M(Xtest, Vs)

The second and main feature of our proposed BoB MIL
algorithm in this paper deals with the fact that data may
have bags within bags. Let X be the original set of instances
which belong to n bags of Xi. Each bag of instances Xi can
contain sub-bags of instances Xi = {Xi1, ..., Xip}. Thus, X
can be rewritten in terms of these sub-bags (Y):
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Y = {X11, ..., X1p1 , X12, ..., X2p2 , ..., Xn1, ..., Xnpn} (8)

Ȳ is a subset of Y that only contains those sub-bags whose
parent bags have positive label.

Using mapping function M , Ȳ can be mapped to vocab-
ulary Vs:

HYs = M(Ȳ , Vs) (9)

HYs is a new training set based on set of sub-bags Ȳ . In
order to classify an unseen sub-bag Xtest

ij , first, the parent
bag Xtest

i is mapped to Htest
i s and then classified using

training set Hs:

Htest
i s = M(Xtest

i , Vs)

cli = G(Hs, H
test
i s ) (10)

If the classification result cli is positive for the parent
bag Xtest

i , then sub-bag Xtest
ij is classified using training set

HYs, otherwise the classification result for sub-bag Xtest
ij is

assumed to be negative:

clij =
{
0, if cli = 0

G(HYs, HY test
ij s ) otherwise (11)

where HY test
ij s = M(Xtest

ij , Vs).
In other words, to classify a sub-bag, first the parent

bag is classified. If the classification result is negative, it is
concluded that the sub-bag will also be classified as negative.
Otherwise, the sub-bag is mapped and classified using the
mapping of the instances that belong to the sub-bag. It should
be noted that the training data for classifying a sub-bag only
contains instances from the parent bags which have positive
labels. Figure 1 illustrates the block diagram of the proposed
BoB MIL algorithm.

In the prostate cancer mpMRI data context, the parent
bags are the 3D imaging data of each patient and sub-bags
represent each 2D image slice in the 3D imaging data of
the patient, and instances are the imaging feature vectors
extracted from local neighbourhoods of pixels in the images
(e.g., 3× 3).

III. EXPERIMENTAL SETUP

In this section, the details of image acquisition protocols,
the imaging data, feature model, and the performance mea-
sures used in this study are described.

A. Image Data
To evaluate the performance of the proposed algorithm

for detection of prostate cancer, the imaging data of 30
patients were used. The images were acquired using a Philips
Achieva 3.0T machine at Sunnybrook Health Sciences Cen-
tre, Toronto, Ontario, Canada. All data was obtained under
the local institutional research ethics board. For each patient,
the following MRI modalities were obtained: T2w, DWI, and
CDI [15], [16]. Table I shows the summary of the imaging
parameters for the imaging modalities used for the experi-
ments (e.g., displayed field of view (DFOV), resolution, echo
time (TE), and repetition time (TR)).

TABLE I: Summary of imaging parameters
Modality DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)

T2w 22× 22 0.49× 0.49× 3 110 4,687

DWI 20× 20 1.56× 1.56× 3 61 6,178

CDI 20× 20 1.56× 1.56× 3 61 6,178

B. Feature Model

The instances in the experimental data are feature vectors
extracted from local neighbourhoods of pixels in different
images of mpMRI. For feature model, we used the one
proposed in [5] where the following imaging modalities were
used:
• T2-weighted MRI: the main MRI modality in detecting

prostate cancer [17].
• Apparent diffusion coefficient (ADC) map: calcu-

lated from diffusion-weighted imaging (DWI) data and
widely used for detecting and diagnosing prostate can-
cer [18].

• Computed high-b diffusion-weighted imaging (CHB-
DWI): high-b DWI calculated computationally using
low-b value DWI, rather than by actual DWI acquisition,
which may not be possible due to MRI hardware
limitation [19].

• Correlated diffusion imaging (CDI): a new diffusion
MRI modality, which takes advantage of the joint cor-
relation in signal attenuation across multiple gradient
pulse strengths and timings to distinguish the healthy
and cancerous tissues in prostate [15], [16].

• Individual b-value DWI images including b-values at 0,
100, 400, 1000s/mm2.

The feature model used for our experiment is the one
proposed in [5] where a comprehensive texture feature model
was built; we used 4 well-known classes of texture features,
which include first- and second-order statistical features,
steerable Gabor filter features, Kirsch filter features [5]. The
first-order statistical features include mean and standard devi-
ation of grey-level intensity, skewness, and kurtosis. Second-
order statistical features such as entropy and contrast are
extracted from the gray-level co-occurrence matrix (GLCM).
As a result, the mpMRI texture feature model consists of a
total of 50 features for each imaging modality totaling 400
features for each instance. A feature selection algorithm [20]
was used to reduce the feature space down to 50 features per
instance.

C. Evaluation Metrics

The ground-truth data was obtained by radiology reports,
confirmed by biopsy data. The performance evaluation was
conducted using a leave-one-patient-out cross validation. The
experiments were done at both slice (2D image) and pa-
tient (3D image) level, using conventional bottom-up feature
model approach and the proposed top-down method (details
in Section IV). The number of clusters in Equation 6 was
set to 5. As classifier, Support Vector Machine (SVM) was
used.
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Fig. 1: Block diagram of bags of bags (BoB) nested MIL algorithm

For our experiments, mpMRI 3D data of 30 patients (15
healthy and 15 with cancer) were used. This amounted to
353 2D slices (308 healthy and 45 cancerous), and 2,132
instances (2,010 healthy and 122 cancerous).

IV. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method in
this paper, we applied it to mpMRI data of prostate for
cancer detection. First, we used the conventional bottom-up
feature model where instances are classified first and then
aggregated to yield the classification results for 2D slices and
3D mpMRI images (i.e., patient level) [12]. Next, we applied
vocabulary-based MIL algorithm (as discussed in Section II)
to classify 2D images as well as 3D mpMRI data at patient
level. Note that these two classifications were done separately
where in each case, the bags of instances were 2D and 3D
images, respectively. Finally, we applied our proposed BoB
nested MIL method to classify 2D slices and 3D mpMRI
data at patient level where 3D images and 2D images were
considered as parent bags and sub-bags, respectively.

Table II shows the sensitivity, specificity, and accuracy of
3D (patient level) and 2D images using conventional bottom-
up method.

TABLE II: Evaluation results for prostate cancer detection
using conventional bottom-up method

Bags Sensitivity Specificity Accuracy

3D mpMRI (Patient level) 0.69 0.39 0.54

2D Slices 0.86 0.54 0.58

Table III shows the sensitivity, specificity, and accuracy
of 3D (patient level) and 2D images using vocabulary-based
MIL method.

TABLE III: Evaluation results for prostate cancer detection
using vocabulary-based MIL method

Bags Sensitivity Specificity Accuracy

3D mpMRI (Patient level) 0.81 0.92 0.87

2D Slices 0.84 0.26 0.34

Table IV shows the sensitivity, specificity, and accuracy of
3D (patient level) and 2D images using our proposed BoB
nested MIL method.

TABLE IV: Evaluation results for prostate cancer detection
using proposed BoB nested method

Bags Sensitivity Specificity Accuracy

3D mpMRI (Patient level) 0.97 0.95 0.96

2D Slices 0.89 0.77 0.79

As it can be seen, the vocabulary-based MIL method
(Table III) improves the results for both 3D and 2D images
compared to conventional bottom-up approach (Table II).
Nevertheless, it still struggles with large amount of false
positives (low specificity) at 2D slice level, as predicted.
Furthermore, it misses several true positives at both patient
and slice level (moderate sensitivity).

The proposed BoB nested MIL method yields the best
results for both 3D images (patient level) and 2D slices for
sensitivity, specificity, accuracy (Table IV). The improvement
in results for parent bags for the proposed method is partially
due to the fact that the bags are sorted based on their
labels before being clustered (Equation 6). More importantly,
the contributing factor to high accuracy of results for the
proposed BoB MIL algorithm is the fact that the proposed
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algorithm uses bags of bags of instances, where parent bags
are classified first, and then the sub-bags are classified.
Furthermore, the training data for sub-bags only contains
the instances that belong to parent bags with positive labels.
This leads to a cleaner and balanced training data for sub-
bags (HYs in Equation 11) and thus, highly accurate results
are achieved.

Figures 2 and 3 show the sensitivity, specificity, and
accuracy for bottom-up , vocabulary-based MIL (MIL), and
proposed BoB nested MIL methods for 3D mpMRI data
(patient level) and 2D mpMRI data (slice level), respectively.

Fig. 2: Sensitivity, specificity, and accuracy for bottom-up,
MIL, and proposed BoB nested MIL methods for 3D mpMRI
data (patient level)

Fig. 3: Sensitivity, specificity, and accuracy for bottom-up,
MIL, and proposed BoB nested MIL methods for 2D mpMRI
data (slice level)

Figure 4 shows ADC maps from two patients mpMRI data

where the one on the left has cancer and the one on the right
has no cancer. As it can be seen, detecting cancerous region
in prostate mpMRI images is complicated and not a trivial
task.

V. CONCLUSIONS

In this paper, a novel bag of bags (BoB) nested multi-
instance learning method was proposed to enable the classi-
fication of both bags of instances and sub-bags of instances
for a given dataset. The motivation behind this approach was
the fact that in cancer screening, imaging data is used with
the foremost goal of detecting cancer at patient level first,
before localizing tumours in the organ. Our proposed BoB
nested MIL method allows the mpMRI data of patients to be
classified at both 3D (patient) level and 2D slice level. This
means that, first, patients are classified into cancerous and
healthy in the first run and then, the cancerous regions are
localized within 2D images of the data. Experimental results
show that the proposed method is a promising approach for
prostate cancer detection with high accuracy, which can be
used for cancer screening of population with a significant
impact on early diagnosis and treatment of prostate cancer.
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Fig. 4: Visual comparison of prostate tumour in ADC images from two patients: Left: arrow points to the cancerous region.
Right: a healthy case with no cancer.
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