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This study presents a hybrid framework for single tree detection from airborne laser scanning (ALS) data
by integrating low-level image processing techniques into a high-level probabilistic framework. The
proposed approach modeled tree crowns in a forest plot as a configuration of circular objects. We took
advantage of low-level image processing techniques to generate candidate configurations from the can-
opy height model (CHM): the treetop positions were sampled within the over-extracted local maxima via
local maxima filtering, and the crown sizes were derived from marker-controlled watershed segmenta-
tion using corresponding treetops as markers. The configuration containing the best possible set of
detected tree objects was estimated by a global optimization solver. To achieve this, we introduced a
Gibbs energy, which contains a data term that judges the fitness of the objects with respect to the data,
and a prior term that prevents severe overlapping between tree crowns on the configuration space. The
energy was then embedded into a Markov Chain Monte Carlo (MCMC) dynamics coupled with a
simulated annealing to find its global minimum. In this research, we also proposed a Monte Carlo-based
sampling method for parameter estimation. We tested the method on a temperate mature coniferous for-
est in Ontario, Canada and also on simulated coniferous forest plots with different degrees of crown over-
lap. The experimental results showed the effectiveness of our proposed method, which was capable of
reducing the commission errors produced by local maxima filtering, thus increasing the overall detection
accuracy by approximately 10% on all of the datasets.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction elevation of the terrestrial surface under the canopy in forests
1.1. Airborne laser scanning in forest inventory

Remote sensing techniques have become an integral part of for-
est inventory to provide accurate, precise and timely forest and
tree characteristics at different scales to support practices of forest
management and planning (Dubayah and Drake, 2000; Naesset
et al., 2004; Tomppo et al., 2002; Wulder, 1998; Xie et al., 2008).
Among these techniques, small-footprint airborne laser scanning
(ALS), also known as airborne LiDAR, has rapidly gained popularity
in forest inventory in recent decades. The unique capability of ALS
to directly measure the 3D structural information of trees and the
makes ALS an alternative to traditional passive optical remote
sensing technology, or even the preferred method, to derive certain
forest parameters, such as canopy height, crown dimensions, stand
volume, basal area, and above-ground biomass (Bortolot and
Wynne, 2005; Hyyppä and Inkinen, 1999; Means et al., 2000;
Næsset, 1997; Naesset, 2002).

Characterization of forest resources using ALS can be broadly
categorized into area-based approaches (ABAs) and individual-
tree-based approaches (ITDs) (Hyyppä et al., 2008). ABAs rely on
the statistical principle and predicts forest attributes based on
parametric regression or nonparametric imputation models built
between field measured variables and features derived from ALS
data (Maltamo et al., 2006; Naesset, 2002). ABAs can perform
under a low ALS point density, and is the method currently applied
in operational forest inventory to provide a wall-to-wall estimation
of forest attributes (Naesset, 2004; White et al., 2013). ITDs
measure or predict tree-level variables on the basic unit of the
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individual trees from ALS data and then aggregate them to obtain
stand-level forest inventory results (Hyyppä et al., 2012).

Despite the added costs and amount of information to store and
process high-density ALS data, ITDs are of significant interest in
forest inventory and is a motivating research topic. The primary
advantage of ITDs over ABAs is the supply of tree lists and the abil-
ity to directly derive the true stem distribution series, which would
result in better prediction for timber assortments (Vastaranta et al.,
2011a). Generally, this information is invaluable in forest
planning-related simulation and optimization, logging operation
planning and wood supply logistics (Vastaranta et al., 2011b),
e.g., detection of harvest trees and forest growth determination
(Yu et al., 2004). Another advantage of ITDs is that they can reduce
the amount of or potentially replace the expensive fieldwork
required for ABAs (Hyyppä et al., 2008; Vastaranta et al., 2012).
Additionally, tree species classification based on ITD has been
reported in recent studies (Brandtberg, 2007; Heinzel and Koch,
2011; Orka et al., 2009; Suratno et al., 2009), which could poten-
tially improve the prediction of species-specific forest attributes
(Heurich, 2008; Yao et al., 2012; Yu et al., 2010). Furthermore,
the combination of ITD and ABA, called the semi-ITD method, to
improve the estimation accuracy has also been viewed as a future
method for forest inventory (Breidenbach et al., 2010; Hyyppä
et al., 2012; Vastaranta et al., 2012). Therefore, individual tree
detection techniques are still of significant importance from the
practical forestry viewpoint.

1.2. Related works on single tree detection

Accordingly, numerous methods have been proposed to detect
single trees from ALS data. Most of the methods focus on the gen-
eration of the canopy height model (CHM), which provides an
accurate representation of the outer surface of the tree canopy.
The peaks and valleys on the CHM generated from high-density
ALS data are better estimations of treetop positions and crown
edges than can be obtained from aerial photographs or satellite
imageries. Therefore, many studies have extended methods devel-
oped for passive optical imageries to detect single trees from ALS
data. Those methods include, but are not limited to, local maxima
filtering (Popescu et al., 2002; Wulder et al., 2000), region growing
(Erikson, 2003; Solberg et al., 2006), valley following (Gougeon,
1995; Leckie et al., 2003), template matching (Korpela et al.,
2007; Pollock, 1996), watershed segmentation and its variance
marker-controlled watershed segmentation (Chen et al., 2006;
Pyysalo and Hyyppa, 2002; Wang et al., 2004), and multi-scale seg-
mentation (Brandtberg and Walter, 1998; Brandtberg et al., 2003).

Among the proposed methods, local maxima filtering (LM) and
marker-controlled watershed segmentation (MCWS) are the most
commonly used and are ready for operational application because
of their rapid implementation while maintaining the capability to
produce relatively accurate results (Kaartinen et al., 2012).
Popescu et al. (2002) have been the first to test a variable window
local maxima filtering on the CHMs, attempting to overcome errors
of omission and commission associated with fixed window local
maxima filtering (Hyyppä et al., 2001).

Once the treetops are detected, MCWS is well suited to delin-
eate the tree crown segments from the CHM. MCWS, which pos-
sesses the advantages of other segmentation methods of region
growing and edge detection, was introduced by Meyer and
Beucher (1990) to overcome the over-segmentation problem of
ordinary watershed segmentation. In MCWS, user-specified mark-
ers are used as the marker function to perform the segmentation;
for additional details, see Gonzalez and Woods (2008). In the resul-
tant segmentation, there will be one segment corresponding to
each marker; in the case of single tree detection, one tree crown
will be captured by one treetop. This result indicates the detection
accuracy of MCWS, subject to the accuracy of the pre-determined
local maxima as true treetops in the previous stage.

The issue with LM is the selection of the filter window size and
the determination of the relationship between the crown size and
the tree height. In the comparison of tree detection algorithms
(Kaartinen et al., 2012), the local maxima-based approach tends
to produce high commission errors. Especially in coniferous for-
ests, spurious treetops are detected within the tree crowns from
large branches. In other cases, local maxima filtering produces a
low commission error, and the omission error often increases
because small tree crowns are more likely to be undetected
(Gebreslasie et al., 2011).

1.3. Probabilistic methods for image analysis

Probabilistic methods represent another branch of powerful
tools in image analysis. These methods have proven to hold great
promise in solving inverse problems, including image segmenta-
tion, image restoration, and feature extraction (Descombes and
Zerubia, 2002). In particular, stochastic models have evolved from
random fields to object processes, and the work has shifted from an
early focus on ‘low-level’ tasks that aim to de-noise, sharpen, and
segment images to solving ‘high-level’ tasks of feature recognition,
i.e., describing an image by its content (Van Lieshout, 2009). Addi-
tional details on low-level and high-level image analysis tasks can
be found in Sonka et al. (2008).

Marked point processes, detailed in Van Lieshout (2000), are
among the most efficient stochastic models used to exploit the ran-
dom variables whose realizations are configurations of geometric
objects or shapes. Generally, in these processes, after a probability
distribution measuring the quality of each object configuration is
defined in the configuration space, the maxima density estimator
is searched for by the Markov Chain Monte Carlo (MCMC) sampler
(Hastings, 1970) coupled with conventional simulated annealing
(Metropolis et al., 1953). This process has led to convincing exper-
imental results in various image analysis and feature extraction
applications, such as road networks extraction (Lacoste et al.,
2005), road mark detection (Tournaire and Paparoditis, 2009),
and 3D building reconstruction (Lafarge et al., 2008; Ortner et al.,
2008; Tournaire et al., 2010).

Likewise, several stochastic models have been proposed to
detect tree crowns from remote sensing data. Descombes and
Pechersky (2006) have presented a three-state Markov Random
Field (MRF) model to detect the tree crowns from aerial imageries.
This approach addressed the problem as an image segmentation
problem and works on the pixel level. Each pixel is assigned to
one of the following three states: (i) vegetation, (ii) background,
and (iii) center of trees. Although the MRF was defined on the pixel
level, the label update was performed on the object level using
elliptical templates of crowns. Furthermore, Perrin et al. (2005,
2006) has employed marked point processes to detect tree crowns
in plantations from color infrared (CIR) aerial imageries. Tree
crowns in the remote sensing image are modeled as a configura-
tion of disks or ellipses. In both of the studies, tree crowns were
detected by maximizing a Bayesian criterion, such as Maximum A
Posteriori (MAP), which became an energy minimization problem
and was solved in a simulated annealing framework.

These stochastic models provide a powerful framework to allow
the inclusion of spatial interactions between objects in the prior
while enabling a measure of consistency between objects and the
image in the data term. However, the inherited property of sto-
chastic models requires exploration of a large configuration space
searching for the optimal configuration, especially for non-data-
driven models, which do not employ any low-level information
that can be extracted from the images. The optimization process
is typically lengthy and computationally expensive.
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1.4. Proposed framework and organization of the paper

This study presents a hybrid framework used to detect single
trees from ALS data by integrating the low-level image processing
techniques, i.e., LM and MCWS, into a high-level probabilistic
model. The proposed model aims to improve the detection accu-
racy compared with traditional LM. Moreover, this model samples
in a reduced configuration space by utilizing image features
extracted by LM and MCWS, which potentially accelerate the opti-
mization process compared with classical stochastic models, e.g.,
marked point processes. The estimation of parameters is another
issue. In most cases, the parameters are tuned by trial and error.
We address the problem of parameter estimation by proposing a
Monte Carlo based method.

This paper is organized as follows. Section 2 describes the study
area and the data used in the study. Section 3 is dedicated to the
formulation of our proposed model. We provide an overview of
the general framework of energy modeling for the stochastic
model, followed by detailing the model design from the configura-
tion space definition to the energy formulation, parameter estima-
tion and model optimization. Finally, an accuracy assessment
method is included. The experimental results of the parameter
estimation and tree detection on real and simulated ALS data are
given in Section 4, and Section 5 presents a discussion on the
proposed model and the achieved results. Conclusions and certain
perspectives for future studies are outlined in Section 6.
2. Materials

2.1. Study area

The study area is a temperate mature coniferous forest located
in the Great Lakes-St. Lawrence region approximately 60 km east
of Sault Ste. Marie, Ontario, Canada (Fig. 1(a)). The natural
Fig. 1. (a) Location of the study area in the Province of Ontario, Canada; (b) a photo and
vegetation dominant in the coniferous forest is eastern white pine
(Pinus strobus) and jack pine (Pinus banksiana), mixed with some
red pine (Pinus resinosa) and black spruce (Picea mariana). The for-
est has an intermediate dense canopy with some open space. The
canopy height is homogenous with an average height of approxi-
mately 20 m. There are some small white pines and shrubs grow-
ing in the understory with a height of approximately 2–3 m
(Fig. 1(b) and (c)).

2.2. Field survey

To test the proposed single tree detection model, three plots
with sizes of 82 � 95 m, 50 � 50 m and 80 � 80 m were selected,
and a field survey was conducted in August 2009. The forest men-
suration campaign determined the tree height (hi, m) with a Vertex
hypsometer and the diameter at beast height (DBH) with a DBH
tape. The positions of trees with a height greater than 5 m
(hi P 5) were determined using GPS and the total station. The
crown width and species were also measured and recorded. The
stem densities of trees with a value of hi P 5 are 154/ha, 160/ha
and 190/ha, with increasing values for the three study plots.

2.3. Airborne laser scanning data

The ALS data were acquired over the study area by a Riegl LMS-
Q560 laser scanner during the same period as the field work. The
flight was performed at a height of approximately 300 m above
the ground with a maximum scanning angle of 22.5�, rendering a
swath width of approximately 300 m. The flight line was designed
to pass over the planned forest plots; therefore, they were located
in the middle part of the swath, and the obscure effect of the
crowns can be minimized for the plots of interest. The device
recorded full-waveforms that were processed into discrete point
clouds with up to 5 returns per pulse. The data collection configu-
ration yielded a high point density of approximately 30 points per
(c) ortho view of the ALS data of a forest plot in the study area rendered by height.
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m2 over the forested area. The returns were classified as ground
and vegetation points using TerraScan software (TerraSolid Ltd.,
Helsinki, Finland). The CHM with a resolution of 0.5 m was derived
as the difference between the digital surface model (DSM) and the
digital elevation model (DEM), interpolated from vegetation points
and ground points, respectively (Hyyppä et al., 2001).
2.4. Simulated ALS data

Vauhkonen et al. (2012) noted that the performance of the ITD
algorithms typically depends on the tree density and the spatial
distribution of trees, i.e., clustering patterns. To test the robustness
of the proposed model more thoroughly, simulated ALS data of
coniferous forest plots with a higher stem density than real forest
plots and different degrees of crown overlap were also prepared in
our study. First, three forest plots, each with a size of 100 � 100 m,
were generated with a hard-core process in which the crown over-
lap was controlled by the interaction distance specified in the
hard-core process. The smaller the interaction distance in the
hard-core process, the more likely the tree objects will be over-
lapped in the resultant plots. Fig. 2(a)–(c) shows the three resulting
point processes. With an increasing degree of crown overlap, the
tree density in the plots also increases. The stem densities of trees
with a value of hi P 5 in the three forest plots are 186/ha, 234/ha
and 261/ha, respectively.

ALS point clouds of individual trees were then selected accord-
ing to the crown size from a coniferous tree template library and
placed in each position to synthesize the ALS data of the forest plot.
The tree template library was prepared from ALS data acquired
from the study area we surveyed. A more detailed procedure can
Fig. 2. (a)–(c) Point process simulated forest plots with different degrees of crown overl
other; (c) plot with overlapping crowns. (d)–(f) The corresponding ALS point clouds of t
be found in Zhang and Sohn (2010). The generated ALS point
clouds viewed from the nadir direction are shown in Fig. 2(d)–(f).
The plots from left to right show forest plots with separated, touch-
ing and overlapping tree crowns, respectively.

In the simulated forest plots, the tree position, height and
crown size are exactly known, therefore providing ideal reference
data to examine the performance of our proposed model under dif-
ferent forest conditions. The simulated ALS data can also be used to
validate the parameter estimation method proposed in Section 3.5
and to investigate the influence that the degree of crown overlap
has on the parameter setting in the proposed model.

3. Methodology

3.1. General framework of energy modeling for the stochastic models

In a probabilistic framework, feature extraction or object
detection from remotely sensed data can be viewed as an inverse
problem. In object oriented stochastic models, features or objects
are represented as a configuration of geometric shapes or objects.
To find the best configuration x based on the observed data y
(the image), we must find the configuration x̂ maximizing the pos-
terior probability, according to the following equation:

x̂ ¼ argmax
x2X

PðX ¼ xjY ¼ yÞ ð1Þ

where X is the configuration space in which x resides. X and Y are
two random variables.

The probability of the model can also be specified in the form of
a Gibbs energy U(x), which implicitly depends on the constant
value y given by the observation:
ap: (a) plot with separated crowns; (b) plot with tree crowns slightly touching each
he three forest plots generated.
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PðX ¼ xjY ¼ yÞ ¼ 1
Z

e�UðxÞ ð2Þ

where Z is a normalizing constant such that Z =
R

xeXe-U(x). The issue
is then reduced to the energy minimization problem of finding the
Maximum A Posteriori estimator x̂ ¼ argmaxx2XPðX ¼ xjY ¼ yÞ,
which is equivalent to finding the configuration minimizing the
Gibbs energy U(�), i.e., x̂ ¼ argminx2XUðxÞ. Generally, an MCMC
embedded simulated annealing is used to find the optimal configu-
ration x̂. The optimization process is particularly interesting
because the complex computation of the normalizing constant Z
is avoided.

3.2. Overall workflow of the proposed model

The flow chart of the proposed method is shown in Fig. 3. As our
primary contribution, the blue blocks show the process how we
construct a constrained configuration space for tree detection, by
taking advantages of low-level image processing techniques, which
is detailed in Section 3.3. The red block involves techniques of
energy formulation and parameter estimation, which are covered
in Sections 3.4 and 3.5, respectively. The optimization process
illustrated by the yellow blocks is described in Section 3.6.

3.3. Configuration space definition of the proposed model

Let us first recall the configuration space definition in the
marked point process. In remote sensing images, the distribution
of tree crowns in forests can be represented by a marked point pro-
cess of disks. The associated space S can be written according to
the following equation:

S ¼ P �M ¼ ½0;XM� � ½0;YM � � ½rm; rM � ð3Þ

where XM and YM are the width and height of the image J , respec-
tively, and (rm, rM) are the minimum and maximum radii of the
disks in the configuration, respectively. Note that x ¼ ðp; rÞ 2 S is a
tree object, where p 2 P is its position and r 2M its radius. The
configuration space X of the marked point process of the tree
crowns can be written according to the following equation:

X ¼
[1
n¼0

Xn;Xn ¼ ffx1; . . . ; xng � Sg ð4Þ

that contains all of the configurations of a finite number of tree
objects xi of S.

In this study, we seek to construct a constrained configuration
space XT �X in which the optimal or near optimal configuration
resides. We will then limit the search for the optimal configuration
in the constrained space XT, which could significantly reduce the
Fig. 3. Flow chart of the
computation demand of random sampling in X in the optimization
process.

We begin by constructing a CHM image, representing the height
of the tree crowns above ground from the classified ALS data. Then,
we extract the local maxima as potential treetops from the CHM
using local maxima filtering with a variable window size method
adapted from Popescu et al. (2002). Our rule is to detect as many
true treetops and reduce omission errors in the first stage. There-
fore, the filters of the LM are set with relative small size empirically
based on the priori knowledge about the plots to over-populate ini-
tial ‘treetops’. Let T represents the set of extracted local maxima:
T ¼ ft1; . . . ; tNg;8i 2 f1; . . . ;Ng; ti 2 P, where N is the total number
of local maxima extracted. The true treetops within the set of local
maxima T are noted as T

� � T .
Given any subset of local maxima C � T, they can be used as

markers in marker-controlled watershed segmentation to obtain
a partition SðCÞ ¼ fSC1 ; . . . ; SCnðCÞg of the CHM, where SCi

is the cor-
responding segment of the local maxima tCi

2 C. S(C) is a low-level
presentation of the CHM image, and the set of segments are
assumed to be a reasonable approximation of the tree crowns with
respect to the set of local maxima C, where n(C) is the number of
local maxima in C.

A tree object xCi
¼ ðtCi

; rCi
Þ is then defined by its location and

radius on the segment SCi
, where the tree location is the corre-

sponding local maximum tCi
, and the radius rCi

is calculated as
the average radius of the segment SCi

. A configuration
xðCÞ ¼ fxC1 ; . . . ; xCnðCÞ g is then constructed from the set of local
maxima C. The entire procedure of configuration construction is
illustrated in Fig. 4.

We note all of the configurations generated from the subsets of
local maxima T as XT = {x(C), C � T}. Apparently, XT is a discrete
subspace of the configuration space X, which cardinality is
card({x(C), C � T}) = card({C, C � T}) = 2card(T). In this manner, we
build a constrained configuration space XT from which to sample
the optimal configuration.

3.4. Energy formulation

As previously mentioned, the Gibbs energy U(x) is defined on
the configuration space to measure the goodness or cost of each
object configuration. The Gibbs energy can be further expressed
as a weighted sum of a prior term Up(x) that favors a specific spa-
tial pattern in configuration x and a data term Ud(x) that quantifies
the quality of the configuration with respect to the data, according
to the following equation:

UðxÞ ¼ aUdðxÞ þ ð1� aÞUpðxÞ ð5Þ

where a e [0, 1] specifies the relative weights of the two energy
terms.
proposed method.



Fig. 4. An example showing the configuration construction from a CHM. (a) A subset of local maxima. Local maxima are shown as red crosses; (b) a marked-controlled
watershed segmentation of the CHM using local maxima in (a) as the marker function; (c) the configuration constructed from the local maxima. Radii of the tree crowns are
extracted from the corresponding segments in (b).
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We intend to make simple and effective choices for the design
of each energy term. The basic assumptions are the geometric
properties of trees in mature coniferous forests in which treetops
are typically located in the central part of tree crowns, and tree
crowns are of a circular shape when viewed from the nadir direc-
tion (Chen et al., 2006; Gleason and Im, 2012). We also tend to
penalize certain patterns in the configurations in the prior term
that tree crowns should not severely overlap.

3.4.1. Data term
The data term is in accordance with the aforementioned

assumption, indicating the likelihood of the tree objects relative
to the low-level segments obtained from the CHM image. Certain
geometric features are extracted from the underlying segment of
each object, and energy functions are proposed to measure how
well those features support the object as a plausible tree.

We incorporate the following two energy functions to reflect
the assumption: symmetric function Us

dðxÞ and area ratio function
Ua

dðxÞ. The data term is a weighted sum of the two energy func-
tions, subject to a hard constraint on the object radii, according
to the following equation:

Udx ¼

X
x2x

ðw1Us
dðxÞ þ ð1�w1ÞUa

dðxÞÞ if rðxÞ 2 ½rm; rM �

þ1 otherwise

8<
: ð6Þ

where w1 is the weight regulating the relative importance of the
symmetric and area ratio functions in the data term.

(i) Symmetric function Us
dðxÞ

A symmetric function is defined as a measure of how well a
treetop is located in the central part of the crown and the degree
to which the tree crown is of a symmetric circular shape. For a
Fig. 5. Asymmetric ratio calculation for (a) symmetric and (b) asymmetric tree
crowns.
given tree object x with corresponding segment sx, the radii from
the treetop point T to the edge of the segment in 8 directions with
constant angular intervals TPiði ¼ 1; . . . ;8Þ are first extracted (see
Fig. 5). The average and standard deviation of the 8 radii are noted
as r(x) and Dr(x). The asymmetric ratio Rsym(x) e [0, 1] of object x is
calculated as the coefficient of variance of the radii according to the
following equation:

RsymðxÞ ¼
DrðxÞ
rðxÞ ð7Þ

A sigmoid function is then used to define the symmetric func-
tion to penalize asymmetric tree crowns given by Eq. (8):

Us
dðxÞ ¼

1

1þ exp� RsymðxÞ�ls
ks

� �� 1 ð8Þ

where ls and ks are parameters set to control the position and slope
of the sigmoid function, respectively. The larger the asymmetric
ratio Rsym(x) e [0, 1], the higher the symmetric function score
Us

dðxÞ 2 ½�1;0�, which indicates that the treetop is more likely to
be a false treetop.

(ii) Area ratio function Ua
dðxÞ

Another area ratio term Ua
dðxÞ is included to re-enforce the

assessment of the geometric features of the objects in the
configuration.

Likewise, an area ratio Rarea e [0, 1] is first calculated. The ratio
is computed as the proportion of the intersection of object x and
the underlying segments sx to the entire area of the segments
A(sx) by Eq. (9). As the area ratio increases, the degree of the geo-
metric feature of the object increases, in accordance with the
hypothesis (see Fig. 6).
Fig. 6. Area ratio calculation for tree objects with (a) symmetric and (b) asymmetric
tree crowns.
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RareaðxÞ ¼
Aðx \ sxÞ

AðsxÞ
ð9Þ

Based on the area ratio of the object, the area ratio function is
defined according to the following equation:

Ua
dðxÞ ¼

1

1þ exp� RareaðxÞ�la
�ka

� �� 1 ð10Þ

where la and ka are used to control the position and slope of the
sigmoid function, respectively.
3.4.2. Prior term
The prior term introduces a priori knowledge concerning the

layout of the objects. In most mature coniferous forest stands, tree
crowns will not overlap too severely. However, overlap between
objects should not be totally prohibited. A repulsive term is then
defined as a soft penalizing function to penalize severe overlaps
in the configuration.

(i) Overlap function Uo
pðxÞ

To define the overlap function, we first introduce a symmetric
neighborhood relationship between objects. We say two objects
xi = (ti, ri) and xj = (tj, rj) are overlapping if the distance between
them is smaller than the sum of their radii, noted as d(ti, tj) < ri +
rj, and we write xi � xj. Then, an overlap ratio Roverlap e [0, 1] is
calculated as the ratio of the overlap area between the two objects
normalized by the area of the smaller object, according to the
following equation (see Fig. 7):

Roverlapðxi; xjÞ ¼
Aðxi \ xjÞ

minðAðxiÞ;AðxjÞÞ
ð11Þ

The overlap score O(xi, xj) on xi � xj is then given according to
the following equation:

Oðxi; xjÞ ¼
1

1þ exp� Roverlapðxi ;xjÞ�lo
ko

� � ð12Þ

where lo and ko are set to control the position and slope of the sig-
moid function, respectively.

The overlap function of configuration X can be expressed
according to the following equation:

Uo
pðxÞ ¼

X
xi�xj

Oðxi; xjÞ;8xi; xj 2 x; i–j ð13Þ

Compared with a classical marked point process, limiting the
search space to configurations generated from a subset of a finite
set of seed points T (the pre-extracted local maxima) prevents mul-
tiple detection problems. The global energy does not have to be
designed to prevent the selection of multiple instances of the same
Fig. 7. Overlap ratio calculation of overlapping tree crowns.
tree because duplicated trees are not part of the search space. Thus,
the prior term contains only the overlap function and is written
according to the following equation:

UpðxÞ ¼ Uo
pðxÞ ð14Þ
3.5. Parameter estimation

Parameters in the model can be distinguished into the following
three categories: physical parameters, weights and thresholds. The
physical parameters rm and rM are size constraints specifying the
range of the tree crown radius in the forest plots. These parameters
are set as 1.0 m and 6.0 m, respectively, according to the range of
tree sizes in the test sites.

The weights a and w1 are assigned to tune the relative impor-
tance that we want to grant to different energy terms or functions
in the combination (see Eqs. (5) and (6)). Both a and w1 are set to
0.5 because we place equal importance on those functions in all of
our experiments.

To reduce the hand-tuned parameters and to avoid a ‘‘trial-and-
error’’ test for parameter setting in most practices, we propose a
parameter estimation method to estimate the threshold pair
ðl; kÞ in the sigmoid functions (Eqs. (8), (10) and (12)) in the energy
terms. In each function, the threshold pair ðl; kÞ controls the toler-
ance and slope of the sigmoid function, respectively, which plays a
significant role in the model. For example, if we set a smaller ls

value in the symmetric function (Eq. (8)), trees with asymmetric
crowns will be penalized more effectively. For a sigmoid function,
a smaller value of k results in a steeper slope, and the associated
energy function has an increased discriminative behavior of a step
function (see Fig. 8).

We address two issues in the parameter estimation of the
energy minimization model. First, the energy terms are designed
to penalize false tree objects or implausible configurations with
respect to the data term and the prior term. False tree objects or
implausible configurations between the objects should receive
high energy scores. The parameter estimation is performed by
fitting the sigmoid functions to the posterior probability of the fea-
tures derived from false tree objects or implausible configurations
based on the logistic regression model. Second, collection of a large
sample size is required to model the posterior probability of those
aforementioned features through the Bayesian theorem. In this
study, we propose a Monte Carlo-based method, which enables
generation of a sufficient number of samples and leads to the esti-
mation of the parameters in the logistic functions.

For example, we will examine the symmetric function Us
dðxÞ. Let

us denote the feature, the asymmetric ratio in this case, extracted
from a tree object xi as d. A random variable Y = {0,1} takes the
value of 1 if xi is a true tree object or 0 otherwise. Given an obser-
vation d, the probability that the random variable is derived from a
false tree object can be given by the posterior probability, accord-
ing to the following equation:

PðY ¼ 0jdÞ ¼ pðdjY ¼ 0ÞpðY ¼ 0Þ
pðdÞ ð15Þ

The higher the posterior probability of the object being a false
tree, the higher the energy we assign to the object through the
energy functions.

According to the Bayesian theorem, the posterior probability
can be rewritten as the following:

PðY ¼ 0jdÞ ¼ 1
1þ Lo

i Po
i

ð16Þ

where Lo
i is the likelihood ratio, and Po

i is the prior ratio, according to
the following equations:



Fig. 8. Plots of the sigmoid function FðxÞ ¼ 1=ð1þ exp ¼ ðx� lÞ=kÞ � 1 with respect to different values of l and k. In the left plot, k is set to 0.2 for all three curves. In the right
plot, l is set to 0.5 for all three curves.
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Lo
i ¼

pðdjY ¼ 1Þ
pðdjY ¼ 0Þ ð17Þ
Po
i ¼

pðY ¼ 1Þ
pðY ¼ 0Þ ð18Þ

The likelihood ratio Lo
i can be calculated by modeling the

likelihood distributions of features derived from true and false
tree objects. A Monte Carlo sampling is utilized to estimate the
likelihood distributions. We generate a configurations x(Ti) from
a random subset of local maxima Ti � T, and x(Ti) is then com-
pared with the reference configuration x(To). Each tree object
xTi

j ; j ¼ 1; . . . ;nðTiÞ in configuration x(Ti) is then labeled as true
or false. We repeat this process for n (n = 50 in our experiments)
time, to collect enough samples for features of the true and false
tree objects.

The Monte Carlo-based method produces a pool of samples suf-
ficient to model the likelihood distributions of different features.
The maximum likelihood method is applied to model the likeli-
hood distributions of the asymmetric ratio, area ratio, and overlap
ratio for true and false trees. In practice, we set the prior ratio Po

i to
2, which is empirically based on the general detection accuracy
achieved by LM-based approaches. The modeled distributions
and fitted functions are shown in Fig. 9.
Fig. 9. Likelihood distributions, posterior probability and fitted sigmoid functions for th
ratios for the reference group; Row 2: likelihood models of those ratios for the error grou
the fitted sigmoid functions (blue dashed lines). (For interpretation of the references to c
3.6. Model optimization

In model optimization, we aim to find the configuration of
objects that minimizes the global energy U(x) in the configuration
space XT that we have proposed. This discrete configuration space
can be effectively explored using a Markov Chain Monte Carlo sam-
pler coupled with simulated annealing.

An MCMC sampler consists in simulating a discrete Markov
chain ðXtÞ; t 2 N on the configuration space XT, which converges
towards an invariant measure specified by the energy U(x). The
sampler performs transitions for one state of the chain to
another by proposing a local change of the current
configuration.

In our application, a configuration of trees x(Tk) can be solely
determined by a subset of local maxima Tk � T given the CHM
image. Once treetops are set as the local maxima Tk, the tree sizes
are decided and directly derived from the corresponding marker-
controlled watershed segments. Therefore, finding the optimal
configuration of trees x(T*) is equivalent to determining the opti-
mal set of local maxima T* � T. The transition of the chain can be
managed by a birth-and-death process in which a local maxima
is added to or removed from the current set of local maxima Tk

to generate a new configuration x(Tk+1), from a previous configura-
tion x(Tk). More specifically,
e asymmetric ratio, area ratio and overlap ratio. Row 1: likelihood models of those
p; Row 3: posterior probabilities (red lines) for those ratios for the error group and
olour in this figure legend, the reader is referred to the web version of this article.)
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	 In a birth process, a local maxima u is randomly selected from
T/Tk and added to the current local maxima set Tk to generate
a new configuration x(Tk+1), with Tk+1 = Tk [ {u}.
	 In a death process, a local maxima v is randomly selected and

removed from the current local maxima set Tk to generate a
new configuration x(Tk+1), with Tk+1 = Tk/{v}.

The move between the configurations is symmetric and
accepted with the following probability:

minð1; exp�ðUðxðTkþ1ÞÞ � UðxÞÞÞ ð19Þ

Otherwise, the previous set of local maxima is kept: Tk+1 = Tk.
A simulated annealing is then embedded in the MCMC to find

the optimal configuration with the minimum global energy U(x).
To perform the simulated annealing, the Gibbs energy U(x) is
replaced with UTt ¼ UðxÞ=Tt . Tt is the temperature parameter,
which tends toward zero as t approaches 1. A logarithmic
decrease ensures the convergence to the global optimum for all
of the initial configurations x0. In practice, a geometric cooling
scheme is preferred to accelerate the process and to give an
approximate solution close to the optimal one, for example, use
Tt = T0at with a close to 1, typically a = 0.98.
3.7. Accuracy assessment

To evaluate the performances of the proposed model, the
detected trees are compared with the reference data. The compar-
ison results of all of the aggregated trees from the detected trees
and the reference data can be classified into the following three
categories: the correctly detected trees (correct), trees in the
detection results that have no corresponding reference tree (com-
mission) and trees in the reference data not detected (omission).
Commission/Omission statistics and the overall detection accuracy
are used to quantify the detection results. The calculation of the
commission error, omission error and overall accuracy is based
on a conventional method of error matrix assessment (Girard,
2003), as shown by Eqs. (20)–(22):

Commission error ¼ Ndet � Ncor

Ndet
� 100% ð20Þ
Commission error ¼ Nref � Ncor

Nref
� 100% ð21Þ
Overall quality ¼ Ncor

Ncor þ ðNdet � NcorÞ þ ðNref � NcorÞ
� 100% ð22Þ

where Ncor is the number of correctly detected trees, Ndet is the total
number of detected trees by the algorithm, and Nref is the number of
reference trees.
Table 1
Parameter estimation results of the proposed model for all of the forest plots.

Parameter estimation

Real forest plots

Plot 1 Plot 2

Symmetric function ls 0.43 0.39
ks 0.10 0.11

Area ratio function la 0.69 0.68
ka �0.07 �0.07

Overlap function lo 0.28 0.32
ko 0.04 0.05
4. Results

4.1. Parameter estimation results

Table 1 displays the parameters estimated for the energy func-
tions of the proposed model. We then performed experiments with
the estimated parameters on real and simulated forest plots to test
the robustness of the model.

The parameter ls is the threshold in the symmetric function
used to penalize tree crowns with high asymmetric ratios. In a for-
est in which most tree crowns are of regular circular shapes, the
value of ls can be set relatively smaller to more effectively penalize
crowns with asymmetric ratios that exceed this threshold. The
threshold la works conversely. Because a larger area ratio indicates
a more circular shaped crown, it must be set to a larger value to
better penalize tree crowns of a non-circular shape. Parameter lo

in the overlap function is set to penalize an overlapping situation
that exceeds a certain degree, which works similarly to the ls

parameter. The greater the degree of crown overlap in a forest plot,
the larger the lo value should be set.

The results shown in Table 1 support this reasoning for param-
eter setting in which the more the tree crowns in the plot are of
symmetric circular shape, the smaller the estimated value of ls,
whereas the larger the value of la. This reasoning is more explicitly
evidenced by the simulated forest plots in which the shape irregu-
larity of the tree crowns increases with the increasing degree of
canopy overlap from separated to overlapping, which in turn
causes an increase in the value of ls from 0.32 to 0.45 and the value
of lo from 0.08 to 0.40, whereas the value of la decreases corre-
spondingly from 0.82 to 0.72. This result also confirms the rational-
ity of our proposed method for parameter estimation. We also
notice that the smaller the overlap degree of a plot, the smaller
the estimated k in the sigmoid function, which indicates a better
‘‘threshold’’ behavior of the associated energy function. This rela-
tionship is well in line with the assumption that the simpler the
plot situation, the easier the true tree crowns and the false tree
crowns can be distinguished.

From the estimation results of the real and simulated forest
plots, we also conclude that the degrees of crown overlap of the
real forest plots are between the touch and overlap situations in
the simulated forest plots. This condition can be observed from
the ranges of the estimated values of ls and lo of the real forest
plots, which are between the parameters estimated for the touch
and overlap simulated forest plots.
4.2. Detection results of real forest plots

We first applied the proposed model with the estimated param-
eters to the ALS data of the three real forest plots. The detection
results of local maxima filtering with a variable window size (also
referred to as LM) and the proposed model are illustrated in Fig. 10,
Simulated forest plots

Plot3 Separate Touch Overlap

0.45 0.32 0.37 0.45
0.13 0.06 0.08 0.15

0.67 0.82 0.76 0.72
�0.11 �0.03 �0.06 �0.14

0.38 0.08 0.26 0.40
0.05 0.01 0.03 0.05



Fig. 10. Detection results of the proposed model with estimated parameters compared with traditional local maxima filtering on real coniferous forest plots. (a)–(c) Show the
local maxima filtering results; (d)–(f) show the detection result of the proposed model using the corresponding local maxima filtering detection as the initial configuration
(the green circles with triangles in the center represent the commission errors; the cyan dot line circles represent the omission errors resulting from the LM; the yellow circles
represent the omission errors produced by the proposed model). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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which shows a good visual assessment of the performances of the
two methods.

The LM results are displayed in the first row (Fig. 10(a)–(c)). In
these images, the red circles with blue crosses in the center repre-
sent the corrected detected tree crowns, whereas the green and
cyan circles represent the commission and omission errors, respec-
tively. Fig. 10 clearly shows that the LM method is prone to pro-
duce commission errors in those coniferous forest plots. This
problem is particularly noted in plot 1 and plot 3 in which numer-
ous false treetops occur on the edge of tree crowns because of the
branching structure of the pine tree species growing in those plots.
Plot 2 is a forest with relatively sparser trees, and commission
errors primarily occur near the plot boundaries caused by incom-
plete crown segments and a lack of reference data.

The corresponding images in the second row (Fig. 10(d)–(f))
show the detection results using the proposed model. As can be
easily interpreted, most green circles were successfully removed,
indicating that the proposed model could effectively reduce the
commission errors. We noticed that a small number of yellow
dot line circles appear, which indicate trees over-pruned by the
proposed model. From the three images, we can observe that the
omission errors produced by the proposed model are primarily
trees with small crowns and are severely overlapped by their
neighboring larger trees. We also noticed that many commission
errors occur at the edge of the plots where crowns are shown
incomplete or the reference data are missing.

Table 2 depicts the detailed quantitative assessment of the
detection results of the LM and the proposed model. There is an
obvious improvement in the results of the proposed model over
the LM method on which it is based. The commission errors of
the three forest plots significantly decreased, with the largest
extend in plot 1, decreasing from 36.2% to 10.3%, whereas the
omission errors before and after the application of the proposed
model remain at similar levels. On average, the overall detection
accuracy increased by approximately 15%, comparing results of
the proposed model with those of the LM method.

4.3. Detection results of simulated forest plots

The proposed model with the estimated parameters applied to
the simulated forest plots exhibited similar detection results to
those of the real forest plots. The proposed model significantly
reduced the commission errors resulting from the LM method in
the three simulated forest plots. Fig. 11 shows a clear contrast in
the detection results of the LM and the proposed model.

Similarly, by comparing the corresponding images in Fig. 11(a)–
(c) and Fig. 11(d)–(f), it can be observed that nearly all of the green
circles (commission errors) in the LM detection results were
removed by the proposed model in the three simulated forest
plots. Meanwhile, there is only a negligible increase in the number
of yellow dot line circles (omission errors). On average, the pro-
posed model increases the overall detection accuracy by approxi-
mately 10% compared with the LM method in all of the cases.

Table 3 gives the exact detection results of the LM method and
the proposed model on the three simulated plots. It is interesting
to examine the influence of the crown overlap degree on the single
tree detection results of the LM method. The overall detection
accuracy decreases by approximately 10% across the three simu-
lated forest plots with an increasing degree of crown overlap from
separated to overlapping. This result is primarily because of the
increase in the number of omission errors with the increase in
the crown overlap. Trees growing by taller trees are more likely
to be missed in the LM detection when crowns are more over-
lapped. However, the commission errors are less affected by the
degree of crown overlap, which remains at a similar level for the
three forest plots.



Table 2
Detection results of the proposed model with estimated parameters compared with local maxima filtering (LM) on the real coniferous forest plots.

Detected trees Correct Commission Omission Overall accuracy (%)

No. % No. % No. %

Plot 1 – 120 trees
LM 185 118 63.8 67 36.2 2 1.7 63.1
Proposed model 126 113 89.7 13 10.3 7 5.8 85.0

Plot 2 – 40 trees
LM 51 38 74.5 13 25.5 2 5.0 71.7
Proposed model 41 38 92.7 3 7.3 2 5.0 88.4

Plot 3 – 122 trees
LM 141 115 81.6 26 18.4 7 5.7 77.7
Proposed model 123 112 91.1 11 8.9 10 8.2 84.2

Fig. 11. Detection results of the proposed model with estimated parameters compared with local maxima filtering on simulated forests. (a)–(c) Show the local maxima
filtering detection on the three simulated forest plots; (d)–(f) show the proposed model detection results using the corresponding local maxima filtering detection as the
initial configuration (the green circles with triangles in the center represent the commission errors; the cyan dot line circles represent the omission errors resulting from the
LM; the yellow circles represent the omission errors produced by the proposed model). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Detection results of the proposed model with estimated parameters compared with local maxima filtering (LM) on the simulated forest plots.

Detected trees Correct Commission Omission Overall accuracy (%)

No. % No. % No. %

Separate plot – 186 trees
LM 213 184 86.4 29 13.6 2 1.1 85.6
Proposed model 182 181 99.5 1 0.5 5 2.7 96.8

Touching plot – 234 trees
LM 252 218 86.5 34 13.5 16 6.8 81.3
Proposed model 216 215 99.5 1 0.5 19 8.1 91.5

Overlapping plot – 261 trees
LM 256 226 88.3 30 11.7 35 13.4 77.6
Proposed model 221 221 100.0 0 0.0 40 15.3 84.7
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Fig. 12. Statistics associated with the optimization process of the simulated forest plot with touching crowns: (a) temperature; (b) acceptance rate; and (c) global energy.

J. Zhang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 98 (2014) 44–57 55
4.4. Optimization process

Fig. 12 presents the statistics associated with the optimization
process, using a simulated forest plot with a touching crown as
an example. The plots are at the same abscissa scale to simplify
the observation of the optimization process. The iteration index
is consistently represented on this axis. In all of the experiments,
the temperature decrease coefficient a is set to 0.98, and the tem-
perature is updated every 500 iterations. For a plot with approxi-
mately 200 trees, it takes approximately 1.2e + 5 iterations for
the energy to converge, which is significantly fewer than the total
number of configurations (2200 
 1.6e + 60) in the entire configura-
tion space. The program takes approximately 3 h to run in Matlab
on a processor with a 2.83 GHz frequency.

The first plot (Fig. 12(a)) shows the evolution of the tempera-
ture in accordance with a geometric cooling scheme, as described
in Section 3.6. Fig. 12(b) represents the acceptance rate associated
with the ‘‘birth-and-death’’ kernel. The move acceptance rates are
high at the beginning of the process and tend to progressively
decrease and stabilize to 0. Finally, Fig. 12(c) plots the global
energy. Variations are the highest during the first iterations, and
the energy slowly decreases. The decrease becomes faster as the
iterations progress and tends to converge slowly to its minimum.

5. Discussion

In this study, we present a hybrid framework to improve the
performance of single tree detection from ALS data by taking
advantage of low-level image processing techniques and a high-
level probabilistic model. The proposed model is applied on the
ALS data of real and simulated coniferous forest plots. The results
show the feasibility of our approach, and the detection quality is
superior to that obtained by the local maxima filtering based
method.

The proposed method has been proven to be effective in
reduce the commission errors that are introduced by LM in all
coniferous forest plots. The LM approach requires a priori knowl-
edge of the relationship between the tree height and the crown
size, and the detection accuracy can be significantly influenced
by the specification of the relationship. In many cases, this rela-
tionship is either hard to obtain or different from study to study
because it depends on certain factors, such as tree species, tree
age, tree density, crown overlapping, and species composition of
the forest plot. Moreover, Falkowski et al. (2006) noted that the
relationship between the tree height and the crown size can be
weak under certain forest conditions, which is coherent with
our case. In this case, when a relationship is designated between
the tree height and the crown size, the parameters set for the LM
are simply a trade-off between commission and omission errors.
We suggested a relative small window size for the LM to over-
extract initial ‘treetops’ at the first stage, and the embedded
probabilistic model showed its powerfulness in excluding the
false treetops from the final configuration through stochastic
inference by considering the spatial layouts and geometric char-
acteristics of the trees in the forest plots.

Simulation of forest plots and ALS data provide a valuable tool
to examine the performance of tree detection methods under the
influence of stem densities and degrees of crown overlap. The
detection results evidence the higher the stem density, the more
likely the tree crowns are overlapped in the plot, causing smaller
trees growing nearby larger trees not easily be detected. The
results obtained are coherent with those reported in other studies
that denser plots give less accuracy results than sparse plots. The
simulated data also provides a fully controlled environment to
observe the behavior of the estimated parameters in the designed
energy functions with respect to the factor of crown overlap. The
increase in crown overlap results in more asymmetric crowns in
CHM, which are noted by the estimated parameters and further
validate the rationality of the parameter estimation method we
proposed. The simulation in our study is intended to test our pro-
posed model under certain key forest variables, i.e., the tree density
and crown overlap in our case. Additional sophisticated simula-
tions of forest structure and ALS returns can be found in
Morsdorf et al. (2009) and Disney et al. (2010).

The detection of single trees from remote sensing data using
marked point processes was first performed by Andersen et al.
(2002) in an attempt to directly detect trees of a coniferous plot
from ALS point clouds using the marked point process in a Bayes-
ian framework. The results have indicated that the algorithm is
generally successful in identifying structures associated with
individual tree crowns within the forest plot but appears to be sen-
sitive to complex point cloud data. Perrin et al. (2005, 2006) has
employed marked point processes to detect tree crowns from CIR
aerial imageries of plantations, which leads to a continuous search
space for the tree objects, in contrast to the proposed method.

The stochastic model we proposed is the first to integrate low-
level image processing techniques and a high-level probabilistic
model into a hybrid framework for single tree detection. The model
assembles marked point processes in terms of object modeling and
energy formulation. However, in the model, the parameters of the
tree objects are directly derived from low-level representations of
LiDAR images produced by traditional image processing tech-
niques rather than random sampling in classical marked point pro-
cesses. Thus, the model generates a constrained discrete
configuration space, in which we sample for the global optimum
that contains the final set of detected trees. In this manner, the
computation cost is significantly reduced, and the optimization
process can be significantly accelerated.

The design of proper energy terms is an important issue we
attempt to address due to the different types of data we used
and the specific manner in which we constructed a configuration.
The models used to detect tree crowns in aerial imageries (Perrin
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et al., 2005, 2006) make use of the distinctive pixel values
between the illuminated area near the center of the tree crowns
and that of the backgrounds or valleys between the crowns. The
contrast between the tree crowns and the background, or treetop
areas and valleys between them, can be exaggerated by shadows
and stretched spectral or radiometric characteristics in the opti-
cal images. However, the elevation differences between those
parts in the CHM images are much milder and complex to model
than the contrasts in optical imageries. This fact is also the rea-
son we chose a Gibbs energy to measure the morphological char-
acteristics of the tree objects in a configuration, other than a
Bayesian framework to model height distributions, considering
the complexity required to design a height model valid for all
of the trees of various heights and crown forms in the forest
area.

Parameter estimation is another challenging task in most sto-
chastic models. In this study, we proposed a Monte Carlo-based
method to estimate certain key parameters in our model. The
Monte Carlo simulation was used to generate random configura-
tions and to create a sufficient number of samples of true and false
tree crowns, which enabled the modeling of feature distributions
of true and false tree crowns to estimate thresholds in the energy
terms. The experimental results on all of the datasets, especially
the simulated ones, suggested that the parameter estimation
method works reasonably well.

The proposed method has certain inherited drawbacks detecting
trees from the rasterized canopy height model, which is incapable
of finding suppressed trees under dominant crowns (Hyyppä
et al., 2012). The method is designed to detect trees in the dominant
layers in the coniferous forest plots of interest. Exploiting 3D
information from the ALS point cloud to detect small trees in the
lower forest layer is a possible direction to overcome this disadvan-
tage (Ferraz et al., 2012; Reitberger et al., 2009). Another limitation
of the method is that it is unable to recover the omission error pro-
duced by local maxima filtering on which it is based. Because tree
positions are constrained within the pre-extracted local maxima,
the model experienced a reduced ability in the classical marked
point process to sample the configuration space more thoroughly.
However, experimental results on real and simulated forest plots
still suggest that the proposed model is a good compromise regard-
ing complexity, efficiency and accuracy.
6. Conclusions and future studies

We propose a hybrid framework to detect single trees from ALS
data by combining the low-level image processing techniques of
LM and MCWS with a high-level probabilistic model. More specif-
ically, in this model, tree crowns in an ALS recovered CHM are
modeled as objects and are considered as a configuration of circles.
The probabilistic model enables the consideration of the geometric
characteristics and the pair-wise interactions of objects in the con-
figuration. The LM and MCWS are employed to produce a low-level
representation of the image, which provides a constrained config-
uration space for the probabilistic model to sample for the optimal
configuration. We also propose a Monte Carlo-based method to
estimate important parameters in the proposed model. The model
is proven effective when applied to real and simulated coniferous
forest plots. The results show that the proposed model has a dis-
tinct improvement in the detection quality over the traditional
local maxima filtering based approach by approximately 10% on
all of the datasets.

Future studies should involve a further examination of the
optimization methods. An important benefit we gained from
our proposed model is that the configuration space is signifi-
cantly reduced by incorporating features extracted from the
CHM image through low-level image processing techniques.
However, there remains a significant requirement to accelerate
the optimization process. A prior-guided MCMC or a steepest
gradient descent algorithm are possibilities we will examine to
accelerate the search for the optimal configuration within the
discrete configuration space. Second, post-processing will be
introduced to recover omission errors from the detection results.
Although the proposed model was proven effective in reducing
commission errors, the tree positions are constrained in the pre-
determined set of the local maxima extracted by local maxima
filtering. It is possible to recover a portion of the omitted trees
from the detected results because those missed crowns will
result in more geometrically irregular segments. Finally, auto-
mated segmentation of forest stands into homogenous areas
with similar forest conditions can be introduced to help train
parameters of the proposed model of representative regions
and make the model applicable to larger areas. We will also fur-
ther test the proposed model on more datasets of different forest
types and conditions.
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