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ABSTRACT: 

 

Tree detection and reconstruction is of great interest in large-scale city modelling. In this paper, we present a marked point process 

model to detect single trees from airborne laser scanning (ALS) data. We consider single trees in ALS recovered canopy height 

model (CHM) as a realization of point process of circles. Unlike traditional marked point process, we sample the model in a 

constraint configuration space by making use of image process techniques. A Gibbs energy is defined on the model, containing a data 

term which judge the fitness of the model with respect to the data, and prior term which incorporate the prior knowledge of object 

layouts. We search the optimal configuration through a steepest gradient descent algorithm. The presented hybrid framework was test 

on three forest plots and experiments show the effectiveness of the proposed method. 

 

1. INTRODUCTION 

There has been a great deal of interest in the 3D modelling of 

urban and suburban environments. Vegetation detection and 

reconstruction plays an important role in the task, as they 

present in forms of row trees, tree groups and in largely, parks 

and urban forests. Serving as basis of tree modelling and many 

other applications, single tree detection is a topic which has 

received significant interest from the remote sensing community 

over the past decades. The predominant studies on single tree 

detection are mainly in forest inventory, however, the methods 

developed in forest environments can be migrated to detect trees 

in urban forests or forests near power line corridors – which are 

of great significance in 3D urban and infrastructure modelling, 

planning and management. 

 

2. RELATED RESEARCH 

2.1 Low-level Image Processing Techniques 

Numerous methods have been proposed to detect single trees 

from ALS data. Most of them focus on the reconstruction of the 

canopy height model (CHM), which provides a representation 

of outer geometry of tree canopy. The peaks and valleys on 

CHM are assumed to be better estimations of treetop positions 

and crown edges than that can be obtained from aerial photos or 

satellite imageries. For this reason, many studies have extended 

methods developed for passive optical imageries to detect single 

trees from ALS data. Those methods include but not limited to: 

local maxima filtering (Popescu et al., 2002), region growing 

(Solberg et al., 2006), valley following (Leckie et al., 2003), 

template matching (Korpela et al., 2007), watershed 

segmentation and its variance marker-controlled watershed 

segmentation (Chen et al., 2006; Pyysalo and Hyyppa, 2002), 

and multi-scale segmentation (Brandtberg et al., 2003). 

 

Among the proposed methods, local maxima filtering and 

marker-controlled watershed segmentation are most commonly 

used and ready for operational application, for their fast 

implementation, while being able to produce relatively plausible 

results (Kaartinen et al., 2012). Hyyppa et al. (2001) detected 

treetops from CHMs using local maxima filtering with fixed 

window size. Popescu et al. (2002) then tested a variable 

window local maxima filtering on CHMs attempting to 

overcome errors of omission and commission associated with 

fixed window local maxima filtering. This approach requires a 

priori knowledge of the relationship between tree height and 

crown size and the detection accuracy can greatly influenced by 

the specification of the relationship. In many cases, this 

relationship is either hard to obtain or different from study to 

study. Moreover, Falkowski et al. (2006) pointed out the 

relationship between tree height and crown size can be weak in 

some forest conditions. Further complicating the issue is that, in 

those applications, CHMs were usually smoothed with Gaussian 

filter before local maxima detection. Inappropriate specification 

of the size of the low pass filter and the degree of smoothing 

can also decrease the detection accuracy even before local 

maxima filtering is carried out in the subsequent step. 

 

Once the treetops are detected, marker-controlled watershed 

segmentation is well suited to delineate the tree crown segments 

from the CHM. Marker-controlled watershed segmentation, 

introduced by Meyer and Beucher (1990), imposes the 

advantages of other segmentation methods of region growing 

and edge detection, thus being able to overcome the over-

segmentation problem of ordinary watershed segmentation. In 

marker-controlled watershed segmentation, user specified 

markers will replace the local maxima that usually spread all 

over the image to perform the segmentation. In the resultant 

segmentation, one segment will correspond to each marker: in 

the case of single tree detection, one tree crown will be captured 

by one treetop. That also means the detection accuracy of 

marker-controlled watershed segmentation subjects to the 

accuracy of pre-determined local maxima as true treetops in the 

previous stage. Most local maxima based approaches tend to 

produce high commission errors in coniferous forests, as 

spurious treetops are detected within tree crowns from large 

branches. Otherwise, in cases local maxima filtering produces 
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low commission error, omission error often goes up as small 

tree crowns are more likely to be undetected (Gebreslasie et al., 

2011; Kaartinen et al., 2012).  

 

2.2 Stochastic Methods  

Stochastic methods represent another branch of powerful tools 

in image analysis. They have proven to hold great promise in 

solving inverse problems including image segmentation, image 

restoration, and feature extraction (Descombes and Zerubia, 

2002) .  

 

Markov random field (MRF) was introduced into computer 

vision community by the seminal works of Besag (1986) and 

Geman and Geman (1984). MRF models an image as a 

realization of a collection of random variables associated with 

each pixel. The appeal of MRF is that it provides a probabilistic 

framework to encode contextual constrains into the prior 

probability, making it robust with respect to noise in the image 

(Li, 2009). However, the local definition of pixelwise constrains 

in MRF is difficult to incorporate more global and strong 

geometric constrains (Descombes and Zerubia, 2002). Marked 

point process models can be seen as an extension of MRF 

(Mallet et al., 2010), such that random variables are associated 

not with each pixels in the image but with random 

configurations of geometric objects or shapes describing the 

image. This means marked point process could model higher 

level geometrical primitives more naturally, while inheriting the 

merit of inclusion of priori knowledge on spatial pattern of 

features. 

 

Several stochastic models have been proposed to detect tree 

crowns from remote sensing data. Descombes and Pechersky 

(2006) presented a three state MRF model to detect tree crown 

from aerial image. This approach addressed the problem as an 

image segmentation problem and worked on pixel level. Each 

pixel has three states as vegetation, background and centre of 

trees. Although the MRF was defined on pixel level, the label 

update was performed on object level using elliptical templates 

of crowns. Zhang and Sohn (2010) proposed a high-level MRF 

model for tree detection from ALS recovered CHM, by 

modelling trees as objects using low-level image features. 

Furthermore, Perrin et al. (Perrin et al., 2005, 2006) employed 

marked point processes to detect tree crowns in plantations from 

near infrared (NIR) aerial imageries. Tree crowns in the remote 

sensing image are modelled as a configuration of discs or 

ellipses. In all works, tree crowns were detected by maximizing 

a Bayesian criterion such as maximum a posteriori (MAP), 

which ended up as an energy minimization problem and solved 

in a simulated annealing framework. 

 

2.3 Motivation 

Marked point processes offer a powerful tool for the inclusion 

of constraints in the prior at object level. But the model is linked 

with images via a data term measured using hypothesis testing 

schema. This inherited property of stochastic model requires 

explorations of huge configuration spaces in order to find the 

optimal configuration, especially for non-data-driven model 

which does not make use of any low-level information that can 

be extracted from images. The optimization process of such 

model is usually computationally expensive and takes a long 

time to converge.  

 

Methods have been proposed to overcome this drawback in 

traditional marked point process (Descombes et al., 2009). This 

paper proposes to combine the virtue of marked point process 

and traditional image process techniques, and presents a hybrid 

framework to detect single trees from ALS data.  

 

3. MARKED POINT PROCESS 

Marked point processes have been introduced in image 

processing by Baddeley and Van Lieshout (1993) as powerful 

stochastic tools to detect an unknown number of objects in an 

image.  

 

3.1 Definition 

Let   be a marked point process in space      , a 

bounded set of   . Each object of   is defined by its position in 

  and associated with a mark from  .   is a measurable 

mapping from a probability space (     ) to configurations of 

points of  . In another word,   is a random variable whose 

realizations are random configurations of geometric objects. 

The configurations, noted as   in the following, belongs to a 

space (   ( )  ( )), where    contains all configuration of a 

finite number of object of  . 

 

3.2 A Model for Tree Crown 

In remote sensing images, distribution of tree crowns in forests 

can be represented by a marked point process of disks. The 

associated space  can be written as: 

 

       [    ]  [    ]  [     ] (1) 

 

where    and    are respectively the width and height of the 

image  , and (  ,   ) the minimum and maximum radius of the 

disks in the configuration. Note   (   )    as a tree object, 

where     is its position and     its radius. The 

configuration space    of marked point process of tree crowns 

in a remote sensed image can be written as: 

 

   ⋃  

 

   

    {{       }   } (2) 

 

3.3 Energy of the Model 

We consider the probability distribution  ( ) of a homogeneous 

Poisson Process on   , which give us a probability measure  ( ) 
on  . Then, for a marked point process  , we can define a 

density  ( ) with respect to the reference measure as: 

 

  ( )  ∫  ( ) (  )
   

 (3) 

 

The density of a configuration   can be written in Gibbs form: 

 

  ( )  
 

 
   ( )  (4) 

 

where   ∫    ( )
   

 (  ) is a normalizing constant. 

 

Feature extraction or object detection from images with the 

model then turns into finding the configuration  ̂ maximizing 

the posterior probability. This issue is then reduced to an energy 

minimization problem, finding the configuration minimizing the 

Gibbs energy  ( ), i.e.,   ̂         ( ), which is equivalent 

to finding the maximum density estimator  ̂         ( ). 
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4. PROPOSED MODEL 

In this work, we seek to find a constraint configuration space 

     in which the optimal or near optimal configuration 

resides. We will then limit the search for optimal configuration 

in the constraint space   , which could greatly reduce the heavy 

computation demand of random sampling in   in optimization 

process. This proposed model is realized by combining low-

level image processing techniques of local maxima filtering and 

marker-controlled watershed segmentation with marked point 

process. 

 

4.1 Constrained Configuration Space 

The CHM image, representing the height of tree crowns above 

ground, is firstly constructed from classified ALS data. Then, 

we apply local maxima filtering with variable window size on 

the CHM to extract local maxima as potential treetops, which 

serves as good representation of tree locations. Let   represents 

the set of extracted local maxima:   {       }    
{     }     , where   is the total number of local maxima 

extracted.  

 

For a given subset of local maxima    , they are used as 

markers in marker-controlled watershed segmentation to obtain 

a partition  ( )  {         ( )} of the CHM, where     is the 

corresponding segment of local maxima      .  ( ) is a low 

level presentation of the CHM image, and the set of segments 

are assumed to be a reasonable approximation of tree crowns 

with respect to the set of local maxima  , where  ( ) is number 

of local maxima in  . 

 

A tree object     (       ) is then defined using location and 

radius on segment    , where tree location is     corresponding 

to the local maximum and radius     is calculated as the average 

radius of segment    . A configuration  ( )  {         ( )} 

can be then constructed from the set of local maxima  . The 

whole procedure is illustrated in Figure 1. 

 

 
Figure 1: An example showing a configuration construction 

from a CHM. (a) a set of local maxima as potential tree 

positions; (b) segmentation of CHM to enable feature extraction; 

(c) generated configuration from the set of local maxima. 

 

We note all configurations generated from a subset of local 

maxima set   as    ⋃  ( )   . Apparently,    is a discrete 

subspace of the whole configuration space  . In this way, we 

build a constrained configuration space    for the marked point 

process to sample the optimal configuration from. 

 

4.2 Energy Formulation  

A configuration   of tree objects is measured in terms of 

goodness or cost by the global energy  ( ), which is composed 

of a data term   ( ) and a prior term   ( ) such that: 

 

  ( )     ( )  (   )  ( ) (5) 

 

where   [   ] is used to tune the tradeoff between the data 

term and the prior term. 

 

4.2.1 Data Term: This term is used to indicate the likelihood 

of the tree objects in relation with low-level segments obtained 

from the CHM image. Two energy functions are proposed to 

measure how well those features support the object as a 

plausible tree. 

 

(i) Symmetric Function   
 ( ) 

A symmetric ratio is defined as a measure of how well a treetop 

is located in the central part of the crown and the degree of the 

tree crown being of a symmetric circular shape (see Figure 2). 

For a given tree object   with corresponding segment   , the 

average radius of the segment and its standard derivation are 

calculated and noted as  ( ) and   ( ). The asymmetric ratio 

    ( )  [   ] of object   is calculated as: 

 

     ( )  
  ( )

 ( )
 (6) 

 

A sigmoid function is then used to define the symmetric 

function to penalize asymmetric tree crowns given by Eq. (7): 

 

 
  
 ( )  

 

      (
    ( )    

  
)

   
(7) 

 

where    and    are parameters set to control the position and 

slope of the sigmoid function respectively. The larger the 

asymmetric ratio     ( )  [   ] , the higher the symmetric 

function score   
 ( )  [    ], which indicates the treetop is 

more likely to be a false treetop. 

 

 
Figure 2: Asymmetric ratio calculation of (a) symmetric and (b) 

asymmetric tree crowns. (   ̅̅ ̅̅  are the radii in different directions) 

 

(ii) Area Ratio Function   
 ( ) 

Another area ratio term   
 ( ) is also included to reinforce the 

assessment of the geometric features of objects in the 

configuration.   

 

Likewise, an area ratio       [   ] is firstly calculated. The 

ratio is computed as the proportion of the intersection of object 

  and the underlying segments    to the whole area of the 

segments  (  ) by Eq. (8). The larger the area ratio, the higher 

the degree the geometric feature of object is in accordance with 

the hypothesis (see Figure 3). 
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Based on the area ratio of the object, the area ratio function is 

defined as: 

 

 
  
 ( )  

 

      (
     ( )    

   
)
   

(9) 

 

where    and    are used to control the position and slope of 

the sigmoid function respectively. 

 

 
Figure 3: Area ratio calculation of (a) symmetric and (b) 

asymmetric tree crowns. 

 

(iii) Area/Size Constraint   
 ( ) 

 

In conventional marked point processes, a bounded set is 

specified for marks associated with points, which in our case are 

the minimum and maximum radii of the disks (     ) as shown 

in Eq. (4). In our applications, we propose a hard area/size 

constraint   
 ( ) function to penalize tree crowns falling out of 

a specific size of [     ] with respect to the forest plots, which 

is defined as: 

 

   
 ( )  {

    ( )  [     ]
            

 (10) 

 

This constraint is put above the two previous energy functions, 

and the data term is finally written as: 

 

 

  ( )  ∑   ((    
 ( )

   

 (    )  
 ( ))   

 ( )) 

(11) 

 

4.2.2 Prior Term: This term introduces a priori knowledge 

concerning the objects layout. In most mature coniferous forest 

stands, tree crowns won’t be overlapped too severely. A 

repulsive term is then defined as a soft penalize function to 

penalize severe overlaps in the configuration. 

 

(i) Overlap Function   
 ( ) 

 

To define the overlap function, we first introduce a symmetric 

neighbourhood relation between objects. We say two objects 

   (     ) and    (     ) are overlapping if  (     )     

   and we write      . Then an overlapping ratio          

[   ] is calculated as the ratio of the overlapping area between 

the two objects normalized by the area of the smaller object (see 

Figure 4): 

 

         (     )  
 (     )

   ( (  )  (  ))
 (12) 

 

The overlap score  (     ) on       is then given as: 

 

 
 (     )  

 

      (
        (     )    

  
)

 
(13) 

 

where    and    are set to control the position and slope of the 

sigmoid function respectively. 

 

The overlap function of configuration   can be expressed as: 

 

   
 ( )  ∑  (     )

     

              (14) 

 

 
Figure 4: Overlap ratio calculation of overlapping tree crowns. 

 

In our application, a tree object occurs just once at a location of 

the pre-extracted local maxima, so there will be no multiple 

detection problems. The prior term contains only the 

overlapping function and is written as: 

 

   ( )    
 ( ) (15) 

 

4.2.3 Parameter Setting: Parameter setting in the model can 

be distinguished into three categories: physical parameters, 

weights and thresholds. 

 

The physical parameters    and    are the size constraints 

specifying the range of tree crown radius in the forest plots, and 

are set as 1.0 m and 6.0 m according to our knowledge about the 

test sites. 

 

Weights are assigned to tune the relative importance we wish to 

grant to different energy functions or terms in the combination. 

There are two weights in our model: a factor   (see Eq. (5)) 

used to weight data term and prior term in the calculation of 

global energy, and the other    (see Eq. 11) in data term, to 

tune importance of symmetric function and area ratio function. 

Both   and    are set to 0.5 as we place equal importance on 

those functions in all our experiments, and they generally gives 

good results. 

 

Thresholds are set in three energy functions (Eq. (7), (9), (13)). 

The first group of threshold           is set as tolerances on 

different constraints of geometric characteristic or pairwise 

interactions. The second group          control slopes of the 

sigmoid functions. In our model, we proposed a Monte Carlo 

method to estimate those parameters for the sigmoid function.  

 

4.3 Model Optimization 

Typically, a reversible jump Markov Chain Monte Carlo 

(RJMCMC) coupled with a simulated annealing is adapted to 

find the optimal configuration in a classical marked point 

process. Although the algorithm is proven to be effective to 

sample the huge configuration space with variable dimensions, 

the computation cost is usually very expensive, and the process 

takes a long time to converge.  

T
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An important benefit we get by constraining the configuration 

space using features extracted from the CHM image through 

low-level image processing techniques, is that the resulting 

configuration space is discrete. Therefore, we limit the search 

for the optimal configuration within the discrete space of    

possible subsets (N as the number of local maxima) and adapt 

the steepest gradient descent algorithm (Baddeley and Van 

Lieshout, 1993) for effective model optimization in our 

application. 

 

5. EXPERIMENTAL RESULTS 

5.1 Experimental Data 

The study area is a boreal mature coniferous forest located in 

the Great Lakes-St. Lawrence region, Ontario, Canada, near a 

power line corridor. Discrete ALS data was acquired over the 

study area by Riegl LMS-Q560 in August, 2009. The forests 

has intermediate dense canopy with some open space. The 

canopy height is homogenous with average height of about 

20m. There are some small white pines and shrubs growing in 

the understory of about 2-3m. Three plots with size of 82 × 95 

m, 50 × 50 m and 80 × 80 m, were selected to test the proposed 

single tree detection model (see Figure 5(a)-(c)). The CHM 

images for each plot were produced with a resolution of 0.5m. 

 

5.2 Quantitative Results 

The proposed model is applied on the three forest plots and 

detection results are presented and compared with traditional 

local maxima filtering (LM) in Figure 5 and Table 1.  

 

The images (a)-(c) in the first row of Figure 5 show the results 

obtained by LM. In those images, red circles with blue crosses 

in the centre stand for correctly detected tree crowns, while 

green and cyan circles represent for commission and omission 

errors respectively. As can be seen, LM is prone to produce a 

lot of commission errors. The corresponding images (d)-(f) 

show the detection results of the proposed model. As can be 

easily interpreted, most green circles have been successfully 

removed, which means the proposed model could effectively 

reduce commission errors. It is also noticed in the results that 

omission errors of the proposed model stay in the similar level 

with that of LM method.  

 

Table 1 depicts detailed quantitative assessment of the detection 

results of LM and the proposed model. There is an obvious 

improvement on the results of the proposed model over the LM 

method it based on. The commission errors dropped 

dramatically across the three plots, with the largest extent in 

Plot 1 from 36.2% to 10.3%, while omission errors didn’t 

change much. Averagely, the overall detection quality increased 

about 15% comparing our proposed model and traditional LM 

method. 

 

6. CONCLUSION AND FUTURE WORKS 

We have proposed a hybrid framework to detect single trees 

from ALS data by combining of marked point processes and 

low-level image processing techniques of local maxima filtering 

and marker-controlled watershed segmentation. In this model, 

tree crowns in ALS recovered CHM are considered as a 

realization of a point process of circles, which enables to take 

into account both the geometric characteristics and pair-wise 

interactions of objects in the configuration. Local maxima 

filtering and marker-controlled watershed segmentation are 

employed to produce low-level representation of the image, 

which provides a constraint configuration space for the marked 

point process to sample for the optimal configuration. 

Experimental results on real forest plots showed the proposed 

model has an improvement in detection quality over the 

traditional local maxima filtering. Future research involves 

comparing the proposed method with traditional Marked Point 

Process approach, and incorporating more stochastic scheme in 

the last stage to recover missed detections in the first step. 
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Figure 5: Detection results of the proposed model with estimated parameters compared with traditional local maxima filtering on 

experimental forest plots. (a)-(c) show the local maxima filtering results; (d)-(f) show the detection result of the proposed model 

using corresponding local maxima filtering detection as initial configuration. (Green circles with triangles in centre – commission 

errors; Cyan dot line circles – omission errors resulted from LM; Yellow circles – omission errors produced by the proposed model.) 

 

Table 1: Detection results of the proposed model (MPP) with estimated parameters compared with local maxima filtering (LM). 

 

Detected Overall

Trees No. % No. % No. % Quality

Plot 1 - 120 trees

LM 185 118 63.8% 67 36.2% 2 1.7% 63.1%

MPP 130 113 86.9% 17 13.1% 7 5.8% 82.5%

Plot 2 - 40 trees

LM 51 38 74.5% 13 25.5% 2 5.0% 71.7%

MPP 41 38 92.7% 3 7.3% 2 5.0% 88.4%

Plot 3 - 122 trees

LM 141 115 81.6% 26 18.4% 7 5.7% 77.7%

MPP 124 113 91.1% 11 8.9% 9 7.4% 85.0%

Correct Commission Omission

(a) Plot 1 (b) Plot 2 (c) Plot 3 

(d) Plot 1 (e) Plot 2 (f) Plot 3 
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