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ABSTRACT: 

 

UAVs equipped with high-resolution thermal cameras provide an excellent investigative tool used for a multitude of building-specific 

applications, including roof insulation inspection. We have presented in this study a relative thermographic calibration algorithm and 

a superpixel Markov Random Field model to address problems in thermal infrared inspection of roof insulation using UAVs. The 

relative thermographic radiometric calibration algorithm is designed to address the autogain problem of the thermal camera. Results 

show the algorithm can enhance the contrast between warm and cool areas on the roof surface in thermal images, and produces more 

constant thermal signatures of different roof insulations or surfaces, which could facilitate both visual interpretation and computer-

based thermal anomaly detection. An automatic thermal anomaly detection algorithm based on superpixel Markov Random Field is 

proposed, which is more computationally efficient than pixel based MRF, and can potentially improve the production throughput 

capacity and increase the detection accuracy for thermal anomaly detection. Experimental results show the effectiveness of the 

proposed method. 

 

1. INTRODUCTION 

The use of Unmanned Aerial Vehicles (UAVs) in commercial 

sector is growing rapidly to provide aerial imaging solutions 

(Nex and Remondino 2013). UAVs equipped with high-

resolution thermal cameras provide an excellent investigative 

tool used for a multitude of building-specific applications, 

including roof insulation inspection. They can graphically depict 

energy inefficiencies and identify wet insulations in the roof 

façade or elsewhere by showing temperature variations within the 

building surveyed with great efficiency, which leads to decreased 

operational and maintain costs, shortened investigation span and 

improvement of other safety issues (Tremco 2014b). 

 

1.1 Thermal Infrared Inspection of Roof Insulation Using 

UAVs – General Principle 

Roof inspection is typically performed to detect wet insulation, 

which is the number one enemy for build-up roofs. Identifying 

the wet insulation and recovering it at early stage can greatly 

reduce the maintenance cost and prolong the life span of a roof. 

This is where thermal infrared roof inspection stands above all 

other methods for this purpose. This non-contact and non-

destructive method provides a fast, accurate and inexpensive way 

to locate areas of wet insulation and potential leaks that gives 

maintenance personnel the opportunity to limit their roof problem 

before they become costly. 

 

Thermal patterns can be observed on the roof due to material 

differences in thermal capacity. During the day, sun heats the roof 

structure. As wet roof insulation has a much higher thermal 

capacity, it absorbs and retains more solar energy than dry roof 

insulation. After sunset, wet roof insulation radiates heat for a 

longer period of time and cools down slower, causing hot-spots 

                                                                 
*  Corresponding author 
 

or thermal anomalies which can be detected by a thermal infrared 

camera during the window of uneven heat dissipation. 

 

Traditionally, thermal infrared roof inspection is carried out as 

on-roof survey, which means sending a crew of people onto a 

roof at night. This is usually a labour intensity, time-consuming, 

and at times, a dangerous undertaking. The most efficient way to 

perform roof inspection is the aerial survey. Aerial survey can get 

a perspective and coverage not humanly possible. It has a 

straight-down view and better meets the needs in applications 

where large areas must be covered within a limited “window” of 

observation. 

 

Without needing an onboard pilot, UAV can be operated by 

highly-trained technicians safely on the ground, fly to a precise 

height, scan the roof and return. Two important imager 

specifications to consider for UAV thermal infrared roof 

inspection to produce usable imagery are thermal sensitivity and 

image resolution (Wood 2013). The thermal sensitivity or noise-

equivalent temperature difference (NETD) is the measurement of 

the smallest temperature difference that a thermal imager can 

detect in the presence of electronic noise. The lower the thermal 

sensitivity, the more detailed and less noise present on the 

thermogram. Highly sensitive (low-NETD) thermal imagers 

show more temperature differences, and thus more patterns. 

Image resolution is important for capturing clear images from a 

distance. Modern thermal infrared imagers used for roof 

inspection usually have an image resolution greater than 

320x240. Higher resolutions are needed when observing the roof 

from greater distance, such as in a flyover. 

 

1.2 Research Problems 

For accurate detection and delineation of wet insulation in roof 

inspection, ground resolution is a more meaningful measure. One 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 
International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W4-381-2015

 
381



 

way to increase spatial resolution and get a wider viewpoint is to 

stitch multiple images together. The UAV scans the roof in a 

programmed pattern and takes hundreds of photographs, which 

are combined into a single large image of the roof, as shown in 

Figure 1. The orthomosaic photo generation with images 

acquired from a UAV platform follows the standard 

photogrammetric pipeline, which is generally well established 

(Armenakis 2013). The produced orthomosaic image is the 

starting point for thermal anomaly detection. 

 

 
Figure 1: Conceptual illustration of UAV-based thermal infrared 

inspection of roof insulation (Tremco 2014a) 

However, the orthomosaic image generation brings in the 

autogain control (AGC) problem of thermal cameras. For thermal 

imagers, heat energy emitted by objects is a particular scene is 

converted into a series of electrical signals, which are processed 

and automatically gain corrected for store and display. AGC 

algorithms automatically adjust the gain settings to render the 

image based on the relative thermal emission of objects in the 

scene, which means the grayscales of objects with the same 

apparent temperature are scaled differently in different scenes. 

This will produce complex thermal signatures for different roof 

structures. The image blending in the image mosaicking step will 

further distort the temperature variances and thermal patterns of 

the orthomosaic roof image. 

 

After the orthomosaic roof images are generated, they are handed 

to thermographers to detect thermal anomalies and delineate their 

boundaries visually. The labour-centric and empirical 

thermography analysis significantly limits the efficiency and 

production throughput capacity of such practice. An automatic 

thermal anomaly detection method is in demand to improve the 

efficiency and enable UAV-based thermal infrared roof 

inspection. 

 

1.3 Research Objectives 

In this work, we aim to address the two research problems by 

proposing two methods on (i) relative thermographic calibration 

for autogain correction, and (ii) superpixel Markov Random 

Field (SMRF) for automatic thermal anomaly detection.  

 

The relative thermographic radiometric calibration method 

attempts to address the autogain problem of the thermal camera. 

When compared the existing gain compensation methods (Brown 

and Lowe 2007), the algorithm enhances the contrast between 

warm and cool areas on the roof surface in thermal images, and 

produces more constant thermal signatures of different roof 

insulations, which facilitates both visual interpretation and 

computer-based thermal anomaly detection. 

 

The superpixel Markov Random Field (SMRF) method deals 

with thermal anomaly detection by aggregating pixels of similar 

grayscales and spatial pattern into image regions – superpixels. 

A MRF is then formulated on superpixles rather than pixel level 

to perform segmentation and detect potential thermal anomaly 

areas, which improve both the efficiency and detection accuracy. 

 

The paper is organized as follows: the methods are detailed in 

Section 2, and experimental results are presented in Section 3. 

Finally the paper is concluded with some remarks in Section 4 

and future directions are indicated. 

 

2. RESEARCH METHODS 

2.1 System Configuration 

FLIR’s Quark lightweight infrared camera is designed for easy 

mounting on a variety of UAVs for thermographic surveying and 

detect analysis applications such as roof inspection. Due to its 

low energy consumption, small size and modest weight, it has 

little to no impact on the flight time of the UAV it is mounted to. 

Despite the small proportions and low energy consumption, the 

FLIR Quark thermal imaging camera provides excellent quality 

thermal images with a resolution of 640 x 480 pixels and a 

thermal sensitivity of below 50 mK (0.05°C) (FLIR website). The 

thermal camera was mounted on an Aeryon Labs SkyRanger 

UAV system to collect thermal infrared images for rooftop 

inspection in this study. Figure 2 shows four thermal images of 

parts of a rooftop collected by the system. 

 

 
Figure 2: Four thermal images collected by FLIR Quark thermal 

imaging camera onboard an Aeryon Labs SkyRanger. 

2.2 Relative Thermographic Radiometric Calibration 

The relative thermographic radiometric calibration consists of 

three steps: (i) base image selection, (ii) overlap region co-

registration of neighbouring images, and (iii) pairwise relative 

thermographic calibration.  

 

To implement a relative thermographic radiometric calibration, it 

is crucial to determine the base image for other images to 

calibrate to. One of the main consideration for our selection is to 

ensure a well thermal contrast between background (normal) 

regions and thermal anomalies. In another words, we want 

thermal anomalies to be distinct and clearly visible on ‘dark’ 

backgrounds after calibration.  

 

Once base image is selection, we need to find a proper adjustment 

function to calibrate other images with respect to the base image. 
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This is done by two following steps of finding matching (overlap) 

regions of neighbouring images and establishing adjustment 

functions between matching images. The calibration should 

produce more constant thermal signatures of different roof 

insulation regions, e.g. thermal anomalies and background 

regions, which facilitates both visual interpretation by the 

thermographers and computer-based thermal anomaly detection. 

An overview of the three steps we proposed is illustrated in 

Figure 3. 

 

 
Figure 3: Overview of our relative thermographic calibration 

method 

2.2.1 Base image determination: In this step, we determine 

the base image as the one with the ‘darkest’ background, to 

ensure a well contrast between thermal anomalies and 

background region. For this purpose, we first apply Otus 

thresholding on all images to have a pre-segmentation of 

foreground and background regions. Then we determine the 

image with the lowest average pixel value of background region 

as the base image for other images to calibrate to.  

 

2.2.2 Overlap zone localization: To establish an adjustment 

function of grayscales between an image with its neighboring 

reference image, we need to first localize the matching (overlap) 

regions between the two. One of the most effective ways to 

register sequential images is to perform homography estimations 

between successive images (pairwise alignment) (Kekec et al. 

2014).  

 

Typically, homographies are estimated between images by 

finding feature correspondences in those images. The most 

commonly used algorithms make use of point feature 

correspondences, though other features can be used as well, such 

as lines or conics. In this study, we extract point features on 

thermal images by SIFT algorithm (Lowe 2004).  

 

 
(a) 

  
(b) (c) 

Figure 4: Matching region of neighbouring images in (a). (b) and 

(c) show left and right image overlapped by the homographic 

projected bonding box of its corresponding matching image, 

respectively. 

As one of the most commonly used robust estimation method, 

RANSAC (Random Sample Consensus) is used to estimate the 

homographies of neighboring images. The idea of the algorithm 

is simple: for a number of iterations, a random sample of 4 

correspondences is selected and a homography 𝐻 is computed 

from those four correspondences. Each other correspondence is 

then classified as inlier or outlier depending on its concurrence 

with 𝐻. After all iterations are done, the iteration that contained 

the largest number of inliers is selected. 𝐻  can then be 

recomputed from all the correspondences that were considered as 

inliers in that iteration. A matching result is shown in Figure 4. 

 

Once we have the homography estimated, we can project the 

range of the image to its neighbouring reference image to localize 

the matching region. 

 

2.2.3 Relative Thermographic Calibration: We assume the 

histogram distributions of the overlap region of two neighboring 

images (one as a reference image 𝐼𝑟, and the other as the image 

to be calibrated 𝐼𝑐) should be identical.  

 

We first build adjustment functions 𝑓𝑐→𝑟(𝐼)  of the intensity 

values of the overlap regions of the two images using histogram 

matching. The basic principle of histogram matching is to 

compute the histogram of each image individually, then get their 

discrete cumulative distribution functions (CDFs). Let’s denote 

the CDF of the first image as 𝐹1 while the CDF of the second 

image as 𝐹2. To make the histograms of the two images similar 

after calibration, we only need to find the mapping function 𝑓, 

for each intensity value 𝐺1 in 𝐼𝑐, we find an intensity value 𝐺2 in 

𝐼𝑟 such that: 

 

𝑓(𝐺1) = 𝑎𝑟𝑔 min
𝐺2∈[0,255]

|𝐹1(𝐺1) − 𝐹2(𝐺2)| , ∀𝐺1 ∈ [0, 255] (1) 

 

Then we apply the function 𝑓(𝑥) on 𝐼𝑐 to get the calibrated image 

𝐼𝑡. A calibration example in shown in Figure 5. As we can see 

from the figure, the histogram of the calibrated image is very 

similar with that of the reference image. Background of 

calibrated image is darker than the original image and contrast 

between backgrounds and thermal anomalies is enhanced. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W4, 2015 
International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-1-W4-381-2015

 
383



 

Figure 5: Relative thermographic calibration. First column shows 

the reference (top), original (middle) and calibrated (bottom) 

images, while the second column shows the histograms of 

corresponding images. 

2.3 Superpixel Markov Random Field (SMRF) for Thermal 

Anomaly Detection 

A novel superpixel-based Markov Random Field method is 

proposed to automatically detect thermal anomalies from thermal 

infrared images of rooftops. In this Markov Random Field 

Model, aggregated regions of pixels with similar intensity or 

spatial properties, or superpixel, is treated as basic unit instead of 

operating at pixel level (Schick et al. 2012). 

 

2.3.1 Superpixel Markov Random Field: In this paper, the 

improved version of simple linear iterative clustering (SLIC) 

algorithm is adopted to aggregate locally similar pixels into 

superpixels (Achanta et al. 2012). This method offers flexibility 

in the compactness and the number of superpixels it generates, 

while preserving object boundaries accurately. Serving as the 

smallest units in image space, superpixel like homogeneous 

regions is considered to provide important spatial support, thus 

more robust to noise and compensates for outlier and erroneous 

pixels. Further, with reduced nodes and adjacency graph, SMRF 

offers the advantage of simplicity and accuracy over pixel-based 

MRF .  

 

2.3.2 Model Formulation: A probabilistic MRF is defined on 

the superpixel segmentation of thermal images to detect potential 

thermal anomalies on roof insulation. The problem is then to 

label each superpixel as thermal anomaly (T) or normal roof 

surface (R). 

 

Let 𝐺(𝑆, 𝐸) denote the SMRF with a superpixel node 𝑠𝑖 ∈ 𝑆 and 

a pair (𝑠𝑖 , 𝑠𝑗) ∈ 𝐸 be an edge between neighboring segments 𝑠𝑖 

and 𝑠𝑗 , then an energy can be defined with respect to the class 

labels 𝐿 = {𝑙1, … , 𝑙𝑛}, 𝑙𝑖 ∈ {𝑇, 𝑅} of superpixels 𝑆. Generally, the 

energy can be defined as: 

 

𝐸(𝐿|𝐺) = ∑𝑈𝑑(𝑠𝑖|𝑙𝑖)

𝑠𝑖∈𝑆

+ ∑ 𝑈𝑝(𝑠𝑖 , 𝑠𝑗|𝑙𝑖 , 𝑙𝑗)

(𝑠𝑖,𝑠𝑗)∈𝐸

 (2) 

 

where 𝑈𝑑(𝑠𝑖|𝑙𝑖)  expresses the unary potential of a superpixel 

node, and 𝑈𝑝(𝑠𝑖 , 𝑠𝑗|𝑙𝑖 , 𝑙𝑗) computes the prior potential between 

the superpixels 𝑠𝑖  and 𝑠𝑗 . In this application, those potential 

functions are designed based on the intensity features of 

superpixels. Detection results of the designed SMRF are 

presented in Section 3.2. 

 

3. EXPERIMENTAL RESULTS 

This section presents experimental results of our proposed 

relative thermographic calibration and superpixel Markov 

Random Field based thermal anomaly detection methods. 

 

3.1 Relative Thermographic Calibration Results 

The relative thermographic calibration results are displayed in 

Figure 6. As can be seen, compared with original thermal images, 

the calibrated images appears darker and overall contrast of 

bright and dark areas are more distinct, which proves appropriate 

base image selected for calibration by our proposed method. 

Meanwhile, the greyscale variations across sequential images of 

corresponding roof surface regions become smaller after 

calibration, indicating a more constant thermal signatures of the 

same surfaces in difference thermal images. 

 
(a) 

 
(b) 

Figure 6: (a) Thermal images before relative thermographic 

calibration and (b) after.  

 

 
(a) (b) 

Figure 7: (a) CDFs of original thermal images and (b) CDFs of 

calibrated ones. 

 

The effects of relative calibration can be more clearly observed 

by the CDF curves before and after calibration as shown in Figure 

7. The CDFs clearly present a shift of grayscale towards lower 

end of 8-bits pixel value range of [0, 255]. The CDFs of 

calibrated images are also more similar with each other. 

 

Some pairwise comparisons of thermal images and CDF shift 

respect to reference image before and after calibration are 

presented in detail in Figure 8. As can be seem in the last column, 

the CDFs of original thermal images are adjusted to be almost 

identical with the reference images after calibration. 
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Figure 8: Relative thermographic calibration results of a strip of four thermal images.  

 

3.2 Superpixel Markov Random Field Thermal Anomaly 

Detection Results 

The SMRF thermal anomaly detection results are shown in 

Figure 9. As we can see, boundaries of superpixels are aligned 

well with intensity edges presented on the thermal images. Main 

thermal anomalies are correctly detected and merged. Some 

linear structures on the roof surface are misclassified as thermal 

anomalies, however, because of their high thermal intensity. It is 

considered to incorporate shape/geometric priors in the energy 

term to exclude those parts from the final detection. We will also 

further extend the SMRF to take more spatial supported features, 

such as texture, into consideration, to pre-segment roof surfaces 

built of different materials showing distinctive thermal patterns 

to improve the detection accuracy in complex situations. 

 

4. CONCLUSIONS 

In this study, we have proposed a relative thermographic 

calibration algorithm and a superpixel Markov Random Field 

model to address problems in thermal infrared inspection of roof 

insulation using UAVs. The relative thermographic radiometric 

calibration algorithm is designed to address the autogain problem 

of the thermal camera. Results show the algorithm can enhance 

the contrast between warm and cool areas on the roof surface in 

thermal images, and produces more constant thermal signatures 

of different roof insulations or surfaces, which facilitate both 

visual interpretation and computer-based thermal anomaly 

detection. The automatic thermal anomaly detection algorithm 

designed based on superpixel Markov Random Field is more 

computationally efficient than pixel based MRF, which can 

potentially improve the production throughput capacity and 

increase the detection accuracy for thermal anomaly detection. 

Further work may include improvement of the SMRF model with 

more comprehensive energy terms to exclude false alarms. 
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Figure 9: Original thermal images (left column) and thermal 

anomaly detection results based on SMRF (right column). 

Thermal anomalies detected are marked with red boundaries. 
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